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1. We first divide b(x) into a(x), then divide the remainder into b(x), and so on, until we get a remainder
of 0.

x + 5
x2 − 4x + 4 ) x3 + x2 − 2x − 8

x3 − 4x2 + 4x
5x2 − 6x − 8
5x2 − 20x + 20

14x − 28

so a(x) = (x + 5)b(x) + (14x− 28), and then

1
14x − 1

7
14x− 28 ) x2 − 4x + 4

x2 − 2x
−2x + 4
−2x + 4

0

So we have b(x) = ( 1
14x− 1

7)(14x− 28). The last non-zero remainder was 14x− 28, so 14x− 28 is a
greatest common divisor of a(x) and b(x).

Note that for any a(x), c(x) ∈ R[x], and k ∈ R \ {0}, c(x) | a(x) if and only if kc(x) | a(x).
So, when we are applying the Euclidean Algorithm we may multiply or divide by constants to
make the numbers nicer to deal with. After the first long division above, we could have divided
1
14(14x− 28) = (x− 2) into b(x) instead. which would have given us b(x) = (x− 2)(x− 2), and the
greatest common divisor we found would be x− 2 instead of 14x− 28.

2. (a) Putting u(x) = 0 and v(x) = 0 gives 0 = a(x)u(x) + b(x)v(x), so 0 ∈ S, and therefore
deg 0 = −∞ ∈ T .

(b) We know that if A ⊆ Z, A 6= ∅ and A is bounded below then A has a least element. We
certainly have T ′ ⊆ Z, and T ′ is bounded below by 0, so we only need to show that T ′ 6= ∅, in
other words to show there is some c(x) ∈ S with c(x) 6= 0. Putting u(x) = 1, v(x) = 0 we get
a(x)u(x) + b(x)v(x) = a(x), so a(x) ∈ S. We assumed that a(x) 6= 0, so deg a(x) 6= −∞, so
deg a(x) ∈ T ′. Thus T ′ 6= ∅, so it has a least element, n say.

(c) Since n ∈ T ′, there is some d(x) ∈ S with deg d(x) = n. Thus there exist ud(x), vd(x) with

d(x) = a(x)ud(x) + b(x)vd(x). (1)

Using the Division Algorithm to divide d(x) into a(x), there exist qa(x) and ra(x) with

a(x) = qa(x)d(x) + ra(x) (2)

and deg ra(x) < deg d(x). Substituting (1) into (2) and rearranging, we get

a(x) = qa(x)(a(x)ud(x) + b(x)vd(x)) + ra(x),

so ra(x) = a(x)(1− qa(x)ud(x)) + b(x)(−qa(x)vd(x)), so ra(x) ∈ S.
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(d) Since ra(x) ∈ S, deg ra(x) ∈ T . However, deg ra(x) < n, so deg ra(x) /∈ T ′. This must mean
that deg ra(x) = −∞, so ra(x) = 0. Thus (2) becomes a(x) = qa(x)d(x), so d(x) | a(x).

(e) Similarly, we can write
b(x) = qb(x)d(x) + rb(x) (3)

with deg rb(x) < deg d(x). We can substitute (1) into (3) and rearrange to get

b(x) = qb(x)(a(x)ud(x) + b(x)vd(x)) + rb(x),

so rb(x) = a(x)(−qb(x)ud(x))+b(x)(1−qb(x)vd(x)), so rb(x) ∈ S. Again, since deg rb(x) ∈ T \T ′

we must have rb(x) = 0 so b(x) = qb(x)d(x), so d(x) | b(x).

(f) Suppose c(x) is a common divisor of a(x) and b(x), so there exist s(x) and t(x) with a(x) =
s(x)c(x) and b(x) = t(x)c(x). Substituting these into (1) gives

d(x) = s(x)c(x)ud(x) + t(x)c(x)vd(x) = c(x)(s(x)ud(x) + t(x)vd(x)),

so c(x) | d(x).

3. Let G = {α, β, γ, δ, ε}. Given that ∗ is a group operation on G, we will complete the following
Cayley Table for ∗:

(a) From α ∗ β = β, we know that α must be the identity element for G. This lets us fill in the
row α and the column α.

(b) We now have β, δ and γ already appearing in row β, so β ∗ ε must be either α or ε. But we
also already have ε in column ε, so β ∗ ε must be α.

(c) We now have β ∗ ε = e, so ε ∗ β = e, i.e. ε ∗ β = α.

(d) Column β already contains β, δ and α, so the remaining two entries must be γ and ε. γ already
appears in row γ, so we must have γ ∗ β = ε and δ ∗ β = γ.

(e) We have
δ ∗ δ = (β ∗ β) ∗ δ = β ∗ (β ∗ δ) = β ∗ γ = ε.

(f) Looking at column γ, the two remaining entries are α and β: row ε already contains α so
ε ∗ δ = β and γ ∗ δ = α. Now δ ∗ ε is α or β, and it cannot be α, so δ ∗ ε = β and δ ∗ γ = α.
Similarly γ ∗ ε is β or δ, and it is not β, so γ ∗ ε = δ and γ ∗γ = β. Thus ε∗γ = δ and ε∗ ε = γ.
The final Cayley Table we obtain is

∗ α β γ δ ε

α α β γ δ ε
β β δ ε γ α
γ γ ε β α δ
δ δ γ α ε β
ε ε α δ β γ
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