MATHS 255 Solutions to Assignment 7 Du	Oue: 7 May 2003
--	-----------------

1. (a) We first use the extended Euclidean Algorithm to find gcd(35, 12):

n	x	y	
35	1	0	r_1
12	0	1	r_2
11	1	-2	$r_3 = r_1 - 2r_2$
1	-1	3	$r_4 = r_2 - r_3$
0	12	-35	$r_5 = r_3 - 11r_4$

From this we see that gcd(35, 12) = 1, and that $1 = 35 \cdot (-1) + 12 \cdot 3$, so $16 = 35 \cdot (-16) + 12 \cdot 48$. So the general solution is x = -16 - 12t, y = 48 + 35t for $t \in \mathbb{Z}$.

(b) Again, we start by using the extended Euclidean Algorithm to find gcd(30, 12):

n	x	y	
30	1	0	r_1
12	0	1	r_2
6	1	-2	$r_3 = r_1 - 2r_2$
0	-2	5	$r_4 = r_2 - 2r_3$

From this we see that gcd(30, 24) = 6. Since $6 \nmid 15$, the equation 30x + 12y = 15 has no integer solutions.

- (c) From our working in part (b) we know that gcd(30, 12) = 6, and $6 = 30 \cdot 1 + 12 \cdot (-2)$, and $18 = 3 \cdot 6$, so $18 = 30 \cdot 3 + 12 \cdot (-6)$. Thus the general solution is $x = 3 \frac{12}{6}t = 3 2t$, $y = -6 + \frac{30}{6}t = -6 + 5t$ for $t \in \mathbb{Z}$.
- **2.** First, suppose that $a \equiv b \pmod{n}$. Then $n \mid a b$, so there exists $s \in \mathbb{Z}$ with a b = sn. Now, $b = q_b n + r_n(b)$ for some $q_b \in \mathbb{Z}$, so we have $a = b + sn = q_b n + r_n(b) + sn = (q_b + s)n + r_n(b)$. By the uniqueness part of the division algorithm, since $q_b + s, r_n(b) \in \mathbb{Z}$ and $0 \leq r_n(b) < n$, we must have $r_n(a) = r_n(b)$.

Conversely, suppose that $r_n(a) = r_n(b)$. There exist $q_a, q_b \in \mathbb{Z}$ with $a = q_a n + r_n(a), b = q_b n + r_n(b)$. Then

$$a - b = (q_a n + r_n(a)) - (q_b n + r_n(b)) = (q_a - q_b)n + (r_n(a) - r_n(b)) = (q_a - q_b)n.$$

Thus, since $q_a - q_b \in \mathbb{Z}$, $n \mid a - b$, so $a \equiv b \pmod{n}$.

3. Solving $\overline{33} = \overline{47} \cdot_{250} \overline{x}$ is equivalent to solving 33 = 47x + 250y, so we first solve this equation. We use the extended Euclidean Algorithm to find gcd(250, 47):

	x	y	n
r_1	0	1	250
r_2	1	0	47
$r_3 = r_1 - 5r_2$	-5	1	15
$r_4 = r_2 - 3r_3$	16	-3	2
$r_5 = r_3 - 7r_4$	-117	22	1
$r_6 = r_4 - 2r_5$	250	-47	0

From this we see that gcd(250, 47) = 1 and that $1 = 47 \cdot (-117) + 25 \cdot 22$, so $33 = 47 \cdot (-3861) + 250 \cdot 726$. The general solution of 33 = 47x + 250y is x = -3861 + 250t, y = 726 - 47t for $t \in \mathbb{Z}$, so the general solution of $\overline{33} = \overline{47} \cdot 250 \overline{x}$ is $\overline{x} = -3861 + 250t$ for $t \in \mathbb{Z}$. Adding multiples of 250 does not change equivalence classes: we choose a suitable value of t to give a value between 0 and 249, namely $\overline{x} = -3861 + 4000 = \overline{139}$.

4. Suppose that b and n are not relatively prime. Put d = gcd(b, n), so d > 1. Notice that for any $x \in \mathbb{Z}$ we have

If $d \nmid a$ then the equation a = bx + ny cannot have any solutions, so $\overline{a} = \overline{b} \cdot_n \overline{x}$ does not have any solutions. If $d \mid a$, say a = dq, then the general solution of a = bx + ny is $x = qx_d - \frac{n}{d}t$, $y = qy_d + \frac{b}{d}t$ for $t \in \mathbb{Z}$, where $d = bx_d + ny_d$. Choosing t = 0 and t = 1 gives us two solutions, $x_0 = qx_d$ and $x_1 = qx_d - \frac{n}{d}$. Now d > 1, so $1 \leq \frac{n}{d} < n$. But then $x_0 - x_1 = \frac{n}{d} \neq 0 \pmod{n}$. Thus $\overline{x_0} \neq \overline{x_1}$, so in this case the solution to $\overline{a} = \overline{b} \cdot_n \overline{x}$ is not unique.

Thus, if b and n are not relatively prime then $\overline{a} = \overline{b} \cdot_n \overline{x}$ has either no solutions or more than one solution: either way, it does not have a unique solution. Hence, by contraposition, if $\overline{a} = \overline{b} \cdot_n \overline{x}$ has a unique solution then b and n are relatively prime.