1. Let P_n be the statement $3 \mid n^3 + 2n$.

Base case: (n = 1) $1^3 + 2 \cdot 1 = 3 = 3 \cdot 1$, so $3 \mid 1^3 + 2 \cdot 1$, i.e. P_1 is true. **Inductive step:** Let $n \in \mathbb{N}$, and suppose that P_n is true. Then $n^3 + 2n = 3a$ for some $a \in \mathbb{Z}$. So

$$(n+1)^3 + 2(n+1) = n^3 + 3n^2 + 3n + 1 + 2(n+1)$$

= $(n^3 + 2n) + 3n^2 + 3n + 3$
= $3(a+n^2+n+1)$ (by ind. hyp.)

hence P_{n+1} is true.

Hence, by induction, P_n is true for all $n \in \mathbb{N}$.

2. Let P_n be the statement $n! > 2^n$.

Base case: (n = 4). We have 4! = 24 and $2^4 = 16$, so $4! > 2^4$, i.e. P_4 is true. **Inductive step:** Let $n \in \mathbb{N}$ with $n \ge 4$, and suppose P_n is true. Then $n! > 2^n$, so

$$(n+1)! = (n+1)n!$$

$$> (n+1)2^{n} \qquad (by ind. hyp.)$$

$$\geq 5 \cdot 2^{n} \qquad (since n \geq 4)$$

$$> 2 \cdot 2^{n}$$

$$= 2^{n+1},$$

so $(n+1)! > 2^{n+1}$, i.e. P_{n+1} is true.

Hence, by induction, P_n is true for all $n \ge 4$.

3. If n = 1 then m = mn + 0, so there is no work to be done. So we will assume that n > 1. Let P_m be the statement "There exist integers q and r such that m = qn + r and $0 \le r < n$ ".

Base case: (m = 1). We have 1 = 0n + 1, and $0 \le 1 < n$, so P_1 is true.

- **Inductive step:** Suppose $m \in \mathbb{N}$ and P_j is true for $1 \leq j \leq m$. We consider three cases: m+1 < n, m+1 = n or m+1 > n.
 - **Case 1:** if m + 1 < n then we have m + 1 = 0n + (m + 1) and $0 \le m + 1 < n$.
 - Case 2: if m + 1 = n then we have m + 1 = 1n + 0 and $0 \le 0 < n$.
 - **Case 3:** if m + 1 > n, put j = (m + 1) n. Then $1 \le j \le m$, so by the ind. hyp. there exist $q_j, r_j \in \mathbb{Z}$ with $0 \le r_j < n$ and $j = q_j n + r_j$. But then $m + 1 = j + n = (q_j n + r_j) + n = (q_j + 1)n + r_j$.

So, whichever case holds, P_{m+1} is true.

Hence, by complete induction, P_m is true for all $m \in \mathbb{N}$.

4. The plan is this: first we show that if f is a wibble function then f(m + 2k) = f(m) + 2k for all $k \in \mathbb{N}$, by induction on k. We will then extend this to showing that f(m + 2k) = f(m + 2k) for all $k \in \mathbb{Z}$. Finally, we apply this to f and g: any $n \in \mathbb{Z}$ is either of the form 0 + 2k for some $k \in \mathbb{Z}$ or of the form 15 + 2k for some k.

For $k \in \mathbb{Z}$, let P_k be the statement "If f is a wibble function and $n \in \mathbb{Z}$ then f(n+2k) = f(n) + 2k". We first prove by induction that P_k is true for all $k \in \mathbb{N}$.

- **Base case:** if f is a wibble function and $n \in \mathbb{Z}$ then f(n+2) = f(n) + 2, by definition of a wibble function.
- **Inductive step:** Let $k \in \mathbb{N}$ and suppose P_k is true. Let f be a wibble function and let $n \in \mathbb{Z}$. Then

$$f(n + 2(k + 1)) = f((n + 2k) + 2)$$

= f(n + 2k) + 2 (since f is a wibble function)
= (f(n) + 2k) + 2 (by ind. hyp.)
= f(n) + 2(k + 1).

Thus P_{k+1} is true.

Hence, by induction, P_k is true for $k \in \mathbb{N}$.

We will now extend this to showing P_k is true for all $k \in \mathbb{Z}$. Note that we P_0 is true, since for any $n \in \mathbb{Z}$ we have f(n+0) = f(n) + 0. Finally, we must deal with negative values of k. If k < 0 then $-k \in \mathbb{N}$. Put j = -k. By the previous part we know that P_j holds. Let f be a wibble function and let $n \in \mathbb{Z}$. Put m = n + 2k, so m = n - 2j, so n = m + 2j. Since P_j is true, f(m+2j) = f(m) + 2j. In other words we have f(n) = f(n-2j) + 2j, so f(n-2j) = f(n) - 2j, i.e. f(n+2k) = f(n) + 2k. Thus we have f(n+2k) = f(n) + 2k for all $k \in \mathbb{Z}$.

Now suppose f and g are both wibble functions. Let $n \in \mathbb{Z}$. If n is even, then n = 2k for some $k \in \mathbb{Z}$ so

$$f(n) = f(0+2k) = f(0) + 2k = g(0) + 2k = g(0+2k) = g(n).$$

If n is odd then n = 2k + 1 for some $k \in \mathbb{Z}$, so n = 2(k - 7) + 15, so n = 15 + 2j where j = k - 7. Then

$$f(n) = f(15+2j) = f(15) + 2j = g(15) + 2j = g(15+2j) = g(n).$$

So either way we have f(n) = g(n), as required.

5. (a) ρ is reflexive. Let $x \in \mathbb{Z}$. Then $x^2 \leq x^2$ so $x \rho x$.

- (b) ρ is not symmetric: for example we have $2^2 \leq 3^2$ but $3^2 \not\leq 2^2$, so $2\rho 3$ but $3\not \neq 2$.
- (c) ρ is not antisymmetric: for example we have $2^2 \leq (-2)^2$ and $(-2)^2 \leq 2^2$, so $2 \rho 2$ and $-2 \rho 2$, but $2 \neq -2$.
- (d) ρ is transitive. Let $x, y, z \in \mathbb{Z}$ with $x \rho y$ and $y \rho z$. Then $x^2 \leq y^2 \leq z^2$, so $x^2 \leq z^2$, so $x \rho z$.