1. Let P_n be the statement $3 | n^3 + 2n$.

Base case: $(n = 1)$ $1^3 + 2 \cdot 1 = 3 = 3 \cdot 1$, so $3 \mid 1^3 + 2 \cdot 1$, i.e. P_1 is true. **Inductive step:** Let $n \in \mathbb{N}$, and suppose that P_n is true. Then $n^3 + 2n = 3a$ for some $a \in \mathbb{Z}$. So

$$
(n+1)3 + 2(n + 1) = n3 + 3n2 + 3n + 1 + 2(n + 1)
$$

= (n³ + 2n) + 3n² + 3n + 3
= 3(a + n² + n + 1) (by ind. hyp.)

hence P_{n+1} is true.

Hence, by induction, P_n is true for all $n \in \mathbb{N}$.

2. Let P_n be the statement $n! > 2^n$.

Base case: $(n = 4)$. We have $4! = 24$ and $2^4 = 16$, so $4! > 2^4$, i.e. P_4 is true. **Inductive step:** Let $n \in \mathbb{N}$ with $n \geq 4$, and suppose P_n is true. Then $n! > 2^n$, so

$$
(n+1)! = (n+1)n!
$$

>
$$
(n+1)2n
$$
 (by ind. hyp.)
>
$$
5 \cdot 2n
$$

>
$$
2 \cdot 2n
$$

=
$$
2n+1
$$
,

so $(n+1)! > 2^{n+1}$, i.e. P_{n+1} is true.

Hence, by induction, P_n is true for all $n \geq 4$.

3. If $n = 1$ then $m = mn + 0$, so there is no work to be done. So we will assume that $n > 1$. Let P_m be the statement "There exist integers q and r such that $m = qn + r$ and $0 \le r \le n$ ".

Base case: $(m = 1)$. We have $1 = 0n + 1$, and $0 \leq 1 \leq n$, so P_1 is true.

Inductive step: Suppose $m \in \mathbb{N}$ and P_j is true for $1 \leq j \leq m$. We consider three cases: $m+1 < n$, $m + 1 = n$ or $m + 1 > n$.

Case 1: if $m + 1 < n$ then we have $m + 1 = 0n + (m + 1)$ and $0 \le m + 1 < n$.

Case 2: if $m + 1 = n$ then we have $m + 1 = 1n + 0$ and $0 \le 0 < n$.

Case 3: if $m + 1 > n$, put $j = (m + 1) - n$. Then $1 \le j \le m$, so by the ind. hyp. there exist $q_j, r_j \in \mathbb{Z}$ with $0 \leq r_j < n$ and $j = q_j n + r_j$. But then $m + 1 = j + n = (q_j n + r_j) + n =$ $(q_i + 1)n + r_i$.

So, whichever case holds, P_{m+1} is true.

Hence, by complete induction, P_m is true for all $m \in \mathbb{N}$.

4. The plan is this: first we show that if f is a wibble function then $f(m + 2k) = f(m) + 2k$ for all $k \in \mathbb{N}$, by induction on k. We will then extend this to showing that $f(m + 2k) = f(m + 2k)$ for all $k \in \mathbb{Z}$. Finally, we apply this to f and g: any $n \in \mathbb{Z}$ is either of the form $0 + 2k$ for some $k \in \mathbb{Z}$ or of the form $15 + 2k$ for some k.

For $k \in \mathbb{Z}$, let P_k be the statement "If f is a wibble function and $n \in \mathbb{Z}$ then $f(n+2k) = f(n)+2k$ ". We first prove by induction that P_k is true for all $k \in \mathbb{N}$.

- **Base case:** if f is a wibble function and $n \in \mathbb{Z}$ then $f(n+2) = f(n)+2$, by definition of a wibble function.
- **Inductive step:** Let $k \in \mathbb{N}$ and suppose P_k is true. Let f be a wibble function and let $n \in \mathbb{Z}$. Then

$$
f(n+2(k+1)) = f((n+2k)+2)
$$

= $f(n+2k)+2$ (since f is a wible function)
= $(f(n)+2k)+2$ (by ind. hyp.)
= $f(n)+2(k+1)$.

Thus P_{k+1} is true.

Hence, by induction, P_k is true for $k \in \mathbb{N}$.

We will now extend this to showing P_k is true for all $k \in \mathbb{Z}$. Note that we P_0 is true, since for any $n \in \mathbb{Z}$ we have $f(n+0) = f(n) + 0$. Finally, we must deal with negative values of k. If $k < 0$ then $-k \in \mathbb{N}$. Put $j = -k$. By the previous part we know that P_j holds. Let f be a wibble function and let $n \in \mathbb{Z}$. Put $m = n + 2k$, so $m = n - 2j$, so $n = m + 2j$. Since P_j is true, $f(m + 2j) = f(m) + 2j$. In other words we have $f(n) = f(n-2j) + 2j$, so $f(n-2j) = f(n) - 2j$, i.e. $f(n+2k) = f(n) + 2k$. Thus we have $f(n + 2k) = f(n) + 2k$ for all $k \in \mathbb{Z}$.

Now suppose f and g are both wibble functions. Let $n \in \mathbb{Z}$. If n is even, then $n = 2k$ for some $k \in \mathbb{Z}$ so

$$
f(n) = f(0 + 2k) = f(0) + 2k = g(0) + 2k = g(0 + 2k) = g(n).
$$

If n is odd then $n = 2k + 1$ for some $k \in \mathbb{Z}$, so $n = 2(k - 7) + 15$, so $n = 15 + 2j$ where $j = k - 7$. Then

$$
f(n) = f(15+2j) = f(15) + 2j = g(15) + 2j = g(15+2j) = g(n).
$$

So either way we have $f(n) = g(n)$, as required.

- **5.** (a) ρ is reflexive. Let $x \in \mathbb{Z}$. Then $x^2 \leq x^2$ so $x \rho x$.
	- (b) ρ is not symmetric: for example we have $2^2 \leq 3^2$ but $3^2 \nleq 2^2$, so $2 \rho 3$ but $3 \rho 2$.
	- (c) ρ is not antisymmetric: for example we have $2^2 \leq (-2)^2$ and $(-2)^2 \leq 2^2$, so $2 \rho 2$ and $-2 \rho 2$, but $2 \neq -2$.
	- (d) ρ is transitive. Let $x, y, z \in \mathbb{Z}$ with $x \rho y$ and $y \rho z$. Then $x^2 \le y^2 \le z^2$, so $x^2 \le z^2$, so $x \rho z$.