MATHS 255Solutions to Assignment 2Due: 19 March 2

- 1. (a) Suppose m < n. Then (since $m, n \ge 0$) $m^2 < n^2$, so $m^2 + m < n^2 + n$, i.e. f(m) < f(n).
 - (b) Suppose $m \not\leq n$. Then $n \leq m$. If n < m then, by (a), f(m) < f(n), and if m = n then f(m) = f(n). So we have $f(n) \leq f(m)$, so $f(m) \not\leq f(n)$. Hence, by contraposition, if f(m) < f(n) then m < n.
 - (c) Let $m, n \in \mathbb{N}$. [We must show that if f(m) = f(n) then m = n.] Suppose, for a contradiction, that f(m) = f(n) but $m \neq n$. Since $m \neq n$ we have m < n or n < m. So, by (a), we have f(m) < f(n) or f(n) < f(m). Either way, we have $f(m) \neq f(n)$, contradicting our assumption that f(m) = f(n). Hence if f(m) = f(n) then m = n, in other words f is one-to-one.
- 2. We need to show existence and uniqueness.

Existence: Put $x_0 = \frac{k-c}{m}$. Note that division by m is allowed because $m \neq 0$. Then $mx_0 + c = m\frac{k-c}{m} + c = (k-c) + c = k$. Thus x_0 is a solution of the equation mx + c = k.

Uniqueness: Suppose x and y are both solutions of the equation. Then mx + c = k and my + c = k, so mx + c = my + c, so (subtracting c from both sides) mx = my, so (dividing both sides by m, which is allowed because $m \neq 0$) x = y, as required.

[Notice that what you would normally do to solve the equation amounts to showing that if x is a solution then $x = \frac{k-c}{m}$: this gives us the uniqueness part (if x and y are both solutions then $x = \frac{k-c}{m}$ and $y = \frac{k-c}{m}$ so x = y). It does **not** establish that value of x we found really is a solution. To see this, compare that "solution" with the following "solution" of the equation x = x + 1: squaring both sides gives $x^2 = (x+1)^2 = x^2 + 2x + 1$, subtracting x^2 from both sides gives 0 = 2x + 1, so -1 = 2x so $x = -\frac{1}{2}$. This "solution" shows that $-\frac{1}{2}$ is the only possible solution of x = x + 1, but of course it does not show that $-\frac{1}{2}$ is a solution.]

- **3.** Let S be the set $\{1, 2, 3\}$ and let A be the set $\{x^2 : x \in S\}$.
 - (a) We can describe A as $A = \{1, 4, 9\}$ or as $\{x : (\exists n \in \{1, 2, 3\}) | (x = n^2) \}$.

(b) (i) $1 \in S$: True.	(iv) $1 \subseteq A$: False.	(vii) $A \in S$: False.
(ii) $1 \subseteq S$: False.	(v) $S \in A$: False.	(viii) $A \subseteq S$: False.
(iii) $1 \in A$: True.	(vi) $S \subseteq A$: False.	

- 4. We will prove $(1) \implies (2), (2) \implies (3)$ and $(3) \implies (1)$.
 - (1) \implies (2): Suppose $A \cap B = A$. [We will show that $A \cup B = B$.] Let $x \in A \cup B$. Then $x \in A$ or $x \in B$. If $x \in A$ then $x \in A \cap B$ (since $A \cap B = A$) so $x \in B$ in this case also. So, either way, we have $x \in B$. Hence $A \cup B \subseteq B$. Conversely, let $y \in B$. Then $y \in A$ or $y \in B$, so $y \in A \cup B$. Hence $B \subseteq A \cup B$. Combining these we have $A \cup B = B$.
 - (2) \implies (3): Suppose that $A \cup B = B$. [We will show that $A \subseteq B$.] Let $x \in A$. Then $x \in A$ or $x \in B$, so $x \in A \cup B$, so (since $A \cup B = B$) $x \in B$. Hence $A \subseteq B$.
 - (3) \implies (1): Suppose that $A \subseteq B$. [We will show that $A \cap B = A$.] Let $x \in A \cap B$. Then $x \in A$ and $x \in B$: in particular $x \in A$. Hence $A \cap B \subseteq A$. Conversely, let $y \in A$. Then (since $A \subseteq B$) we also have $y \in B$, so $y \in A \cap B$. Hence $A \subseteq A \cap B$. Combining these we have $A \cap B = A$.

5. Method 1: Let $x \in A \setminus \bigcup_{\alpha \in \Lambda} B_{\alpha}$. Then $x \in A$ and $x \notin \bigcup_{\alpha \in \Lambda} B_{\alpha}$. For every $\alpha \in \Lambda$, we have $x \notin B_{\alpha}$ (since if it was in any one of these sets then it would be in the union), so $x \in A \setminus B_{\alpha}$. Since this is true for all $\alpha \in \Lambda$, and $\Lambda \neq \emptyset$, $x \in \bigcap_{\alpha \in \Lambda} (A \setminus B_{\alpha})$. Thus $A \setminus \bigcup_{\alpha \in \Lambda} B_{\alpha} \subseteq \bigcap_{\alpha \in \Lambda} (A \setminus B_{\alpha})$. Conversely, let $y \in \bigcap_{\alpha \in \Lambda} (A \setminus B_{\alpha})$. Since there is at least one $\alpha_0 \in \Lambda$, and we have $y \in A \setminus B_{\alpha_0}$, we certainly have $y \in A$. Also, for every $\alpha \in \Lambda$ we have $y \in A \setminus B_{\alpha}$, so $y \notin B_{\alpha}$. Since there is no α with $y \in B_{\alpha}$, we have $y \notin \bigcup_{\alpha \in \Lambda} B_{\alpha}$. Hence $y \in A \setminus \bigcup_{\alpha \in \Lambda} B_{\alpha}$. Thus $\bigcap_{\alpha \in \Lambda} (A \setminus B_{\alpha}) \subseteq A \setminus \bigcup_{\alpha \in \Lambda} B_{\alpha}$. Combining these we have $A \setminus \bigcup_{\alpha \in \Lambda} B_{\alpha} = \bigcap_{\alpha \in \Lambda} (A \setminus B_{\alpha})$.

Method 2: For any x we have

$$x \in A \setminus \bigcup_{\alpha \in \Lambda} B_{\alpha} \iff x \in A \land x \notin \bigcup_{\alpha \in \Lambda} B_{\alpha}$$
$$\iff x \in A \land \sim (x \in \bigcup_{\alpha \in \Lambda} B_{\alpha})$$
$$\iff x \in A \land \sim (\exists \alpha \in \Lambda) (x \in B_{\alpha})$$
$$\iff x \in A \land (\forall \alpha \in \Lambda) (x \notin B_{\alpha})$$
$$\iff (\forall \alpha \in \Lambda) (x \in A \land x \notin B_{\alpha})$$
$$\iff (\forall \alpha \in \Lambda) (x \in A \land x \notin B_{\alpha})$$
$$\iff x \in \bigcap_{\alpha \in \Lambda} (A \setminus B_{\alpha})$$

All but one of these steps is obviously an equivalence. The implication

$$x \in A \land (\forall \alpha \in \Lambda) (x \notin B_{\alpha}) \implies (\forall \alpha \in \Lambda) (x \in A \land x \notin B_{\alpha})$$

is obvious but the converse is only true because Λ is not empty. [In general, a statement $(\forall x \in S)P(x)$ could be true because S is empty and not because there actually is any x at all which makes P(x) true—for example the statement "All of my aeroplanes have five wings" is true because I don't own any aeroplanes at all.]