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1. We must show existence and uniqueness of the solution.

Existence: Put x = a
b = a · 1

b . Then bx = b · a · 1
b = a · b · 1

b = a · 1F = a, so x is a solution of the
equation a = bx.

Uniqueness: Suppose x and y are both solutions, in other words we have a = bx and a = by. Then
bx = by, so 1

b bx = 1
b by, so 1F x = 1F y, so x = y.

2. (a) Suppose a < b. Then b−a ∈ P . Now (b+ c)− (a+ c) = (b−a)+ (c− c) = (b−a)− 0F = b−a,
so (b + c)− (a + c) ∈ P , so a + c < b + c.

(b) Suppose a ≤ b. Then a < b or a = b. If a < b then a + c < b + c by part (a), and if a = b then
a + c = b + c. So either way we have a + c ≤ b + c.

(c) Suppose a < b and 0F < c. Then b − a ∈ P and c − 0F ∈ P , i.e. c ∈ P , so (b − a)c ∈ P , i.e.
bc− ac ∈ P , so ac < bc.

(d) Suppose, for a contradiction that a ∈ P but 1
a /∈ P . Then we must have 1

a = 0F or − 1
a ∈ P .

Case 1: Suppose 1
a = 0. Then 1F = a · 1

a = a · 0F = 0F , so 1F = 0F . But the field axioms
specify that 1F 6= 0F .

Case 2: Suppose − 1
a ∈ P . Then a(− 1

a) ∈ P , so −(a · 1
a) ∈ P , i.e. −1F ∈ P , so 1F /∈ P . But

this contradicts a result proved in lectures that 1F ∈ P .

So neither case 1 nor case 2 is possible, so we must have 1
a ∈ P as required.

(e) Suppose 0F < a < b. Then b − a ∈ P and a, b ∈ P , so by part (d) we have 1
a ∈ P and 1

b ∈ P .
Thus 1

a ·
1
b ∈ P , so (b−a) 1

a
1
b ∈ P . But (b−a) 1

a
1
b = b1

b
1
a −a 1

a
1
b = 1

a −
1
b , so 1

a −
1
b ∈ P , so 1

b < 1
a .

Since we also have 1
b ∈ P we have 0F < 1

b < 1
a as required.

3. (a) Suppose first that [c, d] ⊆ [a, b]. Since c ≤ c ≤ d, c ∈ [c, d] ⊆ [a, b], so a ≤ c ≤ b. Similarly,
d ∈ [c, d] ⊆ [a, b] so a ≤ d ≤ b. Thus a ≤ c and d ≤ b.
Conversely, suppose a ≤ c and d ≤ b. Let x ∈ [c, d]. Then c ≤ x ≤ d, so a ≤ c ≤ x ≤ d ≤ b, so
a ≤ x ≤ b, so x ∈ [a, b]. Thus [c, d] ⊆ [a, b].

(b) Let c ∈ R. We have

c ∈
⋂
n∈N

[an, bn] ⇐⇒ (∀n ∈ N)(c ∈ [an, bn])

⇐⇒ (∀n ∈ N)(an ≤ c ≤ bn)
⇐⇒ (∀n ∈ N)(an ≤ c) ∧ (∀n ∈ N)(c ≤ bn)
⇐⇒ c is an upper bound for { an : n ∈ N } and

c is a lower bound for { bn : n ∈ N }
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(c) Let n ∈ N. Let Pk be the statement “an ≤ an+k and bn+k ≤ bn”.

Base case: From [an+1, bn+1] ⊆ [an, bn] and part (a) we have an ≤ an+1 and bn+1 ≤ bn. So P1

is true.
Inductive step: Let k ∈ N, and suppose that Pk is true. As in the base step, we have an+k ≤

an+k+1 and bn+k+1 ≤ bn+k, so by the inductive hypothesis we have an ≤ an+k ≤ an+k+1

and bn+k+1 ≤ bn+k ≤ bn, so an ≤ an+k+1 and bn+k+1 ≤ bn, i.e. Pk+1 is true.

Hence, by induction, Pk is true for all k ∈ N.

(d) Let m,n ∈ N. We consider three cases: m < n, m = n or n < m. If m < n then there is some
k with m + k = n. By (c) we have am ≤ am+k = an < bn, so am ≤ bn. If m = n then we have
am = an < bn, so am ≤ bn. Finally, if n < m then m = n + k for some k ∈ N, so by part (c) we
have am < bm = bn+k ≤ bn, so am ≤ bn.

(e) Put S = { an : n ∈ N }. Then a1 ∈ S, so S 6= ∅, and by part (d) we know that S is bounded
above by b1, so S has a least upper bound. Put c = supS.

(f) Let n ∈ N. Then, by part (d), am ≤ bn for all m, so bn is an upper bound for S. Thus, since
c is the least upper bound for S, c ≤ bn. Since this holds for all n, c is a lower bound for
{ bn : n ∈ N }.

(g) From (e) and (f), c is both an upper bound for { an : n ∈ N } and a lower bound for { bn : n ∈ N },
so by (b) we have c ∈

⋂
n∈N[an, bn], so

⋂
n∈N[an, bn] 6= ∅.

4. Suppose first that sn → L. Let ε > 0. Then there is some N ∈ N such that for all n > N ,
|sn − L| < ε. Let n > N . Then |an − L| = |s2n−1 − L| < ε, since 2n − 1 ≥ n > N . Thus an → L.
Similarly, if n > N then |bn − L| = |s2n − L| < ε since 2n ≥ n > N . Thus bn → L.

Conversely, suppose that an → L and bn → L. Let ε > 0. There exist N1, N2 ∈ N such that if
n > N − 1 then |an − L| < ε and if n > N2 then |bn − L| < ε. Put N = max{2N1 − 1, 2N2}. Let
n > N . Then n is either odd or even.

Case 1: Suppose n is odd. Then n = 2k − 1 for some k ∈ N, and since n > N , n > 2N1 − 1, i.e.
2k − 1 > 2N1 − 1, so 2k > 2N1, so k > N1. Thus |ak − L| < ε, and since sn = s2k−1 = ak we
have |an − L| < ε.

Case 2: Suppose n is even. Then n = 2k for some k ∈ N, and since n > N , n > 2N2, i.e. 2k > 2N2,
so k > N2. Thus we have |bk − L| < ε, and sn = s2k = bk, so |sn − L| < ε.

Thus in either case we have |sn − L| < ε. Hence sn → L.
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