MATHS 255	Solutions to Assignment 10	Due: 28 May 2003
-----------	----------------------------	------------------

1. We must show existence and uniqueness of the solution.

Existence: Put $x = \frac{a}{b} = a \cdot \frac{1}{b}$. Then $bx = b \cdot a \cdot \frac{1}{b} = a \cdot b \cdot \frac{1}{b} = a \cdot 1_F = a$, so x is a solution of the equation a = bx.

Uniqueness: Suppose x and y are both solutions, in other words we have a = bx and a = by. Then bx = by, so $\frac{1}{b}bx = \frac{1}{b}by$, so $1_Fx = 1_Fy$, so x = y.

- **2.** (a) Suppose a < b. Then $b a \in P$. Now $(b + c) (a + c) = (b a) + (c c) = (b a) 0_F = b a$, so $(b + c) (a + c) \in P$, so a + c < b + c.
 - (b) Suppose $a \le b$. Then a < b or a = b. If a < b then a + c < b + c by part (a), and if a = b then a + c = b + c. So either way we have $a + c \le b + c$.
 - (c) Suppose a < b and $0_F < c$. Then $b a \in P$ and $c 0_F \in P$, i.e. $c \in P$, so $(b a)c \in P$, i.e. $bc ac \in P$, so ac < bc.
 - (d) Suppose, for a contradiction that a ∈ P but ¹/_a ∉ P. Then we must have ¹/_a = 0_F or -¹/_a ∈ P.
 Case 1: Suppose ¹/_a = 0. Then 1_F = a · ¹/_a = a · 0_F = 0_F, so 1_F = 0_F. But the field axioms specify that 1_F ≠ 0_F.
 - **Case 2:** Suppose $-\frac{1}{a} \in P$. Then $a(-\frac{1}{a}) \in P$, so $-(a \cdot \frac{1}{a}) \in P$, i.e. $-1_F \in P$, so $1_F \notin P$. But this contradicts a result proved in lectures that $1_F \in P$.

So neither case 1 nor case 2 is possible, so we must have $\frac{1}{a} \in P$ as required.

- (e) Suppose $0_F < a < b$. Then $b a \in P$ and $a, b \in P$, so by part (d) we have $\frac{1}{a} \in P$ and $\frac{1}{b} \in P$. Thus $\frac{1}{a} \cdot \frac{1}{b} \in P$, so $(b-a)\frac{1}{a}\frac{1}{b} \in P$. But $(b-a)\frac{1}{a}\frac{1}{b} = b\frac{1}{b}\frac{1}{a} - a\frac{1}{a}\frac{1}{b} = \frac{1}{a} - \frac{1}{b}$, so $\frac{1}{a} - \frac{1}{b} \in P$, so $\frac{1}{b} < \frac{1}{a}$. Since we also have $\frac{1}{b} \in P$ we have $0_F < \frac{1}{b} < \frac{1}{a}$ as required.
- **3.** (a) Suppose first that $[c,d] \subseteq [a,b]$. Since $c \leq c \leq d$, $c \in [c,d] \subseteq [a,b]$, so $a \leq c \leq b$. Similarly, $d \in [c,d] \subseteq [a,b]$ so $a \leq d \leq b$. Thus $a \leq c$ and $d \leq b$. Conversely, suppose $a \leq c$ and $d \leq b$. Let $x \in [c,d]$. Then $c \leq x \leq d$, so $a \leq c \leq x \leq d \leq b$, so $a \leq x \leq b$, so $x \in [a,b]$. Thus $[c,d] \subseteq [a,b]$.
 - (b) Let $c \in \mathbb{R}$. We have

$$c \in \bigcap_{n \in \mathbb{N}} [a_n, b_n] \iff (\forall n \in \mathbb{N}) (c \in [a_n, b_n])$$
$$\iff (\forall n \in \mathbb{N}) (a_n \le c \le b_n)$$
$$\iff (\forall n \in \mathbb{N}) (a_n \le c) \land (\forall n \in \mathbb{N}) (c \le b_n)$$
$$\iff c \text{ is an upper bound for } \{a_n : n \in \mathbb{N}\} \text{ and}$$
$$c \text{ is a lower bound for } \{b_n : n \in \mathbb{N}\}$$

- (c) Let n ∈ N. Let P_k be the statement "a_n ≤ a_{n+k} and b_{n+k} ≤ b_n".
 Base case: From [a_{n+1}, b_{n+1}] ⊆ [a_n, b_n] and part (a) we have a_n ≤ a_{n+1} and b_{n+1} ≤ b_n. So P₁ is true.
 - **Inductive step:** Let $k \in \mathbb{N}$, and suppose that P_k is true. As in the base step, we have $a_{n+k} \leq a_{n+k+1}$ and $b_{n+k+1} \leq b_{n+k}$, so by the inductive hypothesis we have $a_n \leq a_{n+k} \leq a_{n+k+1}$ and $b_{n+k+1} \leq b_{n+k} \leq b_n$, so $a_n \leq a_{n+k+1}$ and $b_{n+k+1} \leq b_n$, i.e. P_{k+1} is true.

Hence, by induction, P_k is true for all $k \in \mathbb{N}$.

- (d) Let $m, n \in \mathbb{N}$. We consider three cases: m < n, m = n or n < m. If m < n then there is some k with m + k = n. By (c) we have $a_m \le a_{m+k} = a_n < b_n$, so $a_m \le b_n$. If m = n then we have $a_m = a_n < b_n$, so $a_m \le b_n$. Finally, if n < m then m = n + k for some $k \in \mathbb{N}$, so by part (c) we have $a_m < b_m = b_{n+k} \le b_n$, so $a_m \le b_n$.
- (e) Put $S = \{a_n : n \in \mathbb{N}\}$. Then $a_1 \in S$, so $S \neq \emptyset$, and by part (d) we know that S is bounded above by b_1 , so S has a least upper bound. Put $c = \sup S$.
- (f) Let $n \in \mathbb{N}$. Then, by part (d), $a_m \leq b_n$ for all m, so b_n is an upper bound for S. Thus, since c is the least upper bound for S, $c \leq b_n$. Since this holds for all n, c is a lower bound for $\{b_n : n \in \mathbb{N}\}$.
- (g) From (e) and (f), c is both an upper bound for $\{a_n : n \in \mathbb{N}\}$ and a lower bound for $\{b_n : n \in \mathbb{N}\}$, so by (b) we have $c \in \bigcap_{n \in \mathbb{N}} [a_n, b_n]$, so $\bigcap_{n \in \mathbb{N}} [a_n, b_n] \neq \emptyset$.
- **4.** Suppose first that $s_n \to L$. Let $\varepsilon > 0$. Then there is some $N \in \mathbb{N}$ such that for all n > N, $|s_n L| < \varepsilon$. Let n > N. Then $|a_n L| = |s_{2n-1} L| < \varepsilon$, since $2n 1 \ge n > N$. Thus $a_n \to L$. Similarly, if n > N then $|b_n L| = |s_{2n} L| < \varepsilon$ since $2n \ge n > N$. Thus $b_n \to L$.

Conversely, suppose that $a_n \to L$ and $b_n \to L$. Let $\varepsilon > 0$. There exist $N_1, N_2 \in \mathbb{N}$ such that if n > N - 1 then $|a_n - L| < \varepsilon$ and if $n > N_2$ then $|b_n - L| < \varepsilon$. Put $N = \max\{2N_1 - 1, 2N_2\}$. Let n > N. Then n is either odd or even.

- **Case 1:** Suppose n is odd. Then n = 2k 1 for some $k \in \mathbb{N}$, and since n > N, $n > 2N_1 1$, i.e. $2k 1 > 2N_1 1$, so $2k > 2N_1$, so $k > N_1$. Thus $|a_k L| < \varepsilon$, and since $s_n = s_{2k-1} = a_k$ we have $|a_n L| < \varepsilon$.
- **Case 2:** Suppose *n* is even. Then n = 2k for some $k \in \mathbb{N}$, and since n > N, $n > 2N_2$, i.e. $2k > 2N_2$, so $k > N_2$. Thus we have $|b_k L| < \varepsilon$, and $s_n = s_{2k} = b_k$, so $|s_n L| < \varepsilon$.

Thus in either case we have $|s_n - L| < \varepsilon$. Hence $s_n \to L$.