DEPARTMENT OF MATHEMATICS

MATHS 255	Solutions to Assignment 1	Due: 12 March 2003

- 1. (a) "17 is a prime number" is a statement, which we would translate as P(17) (where P(n) denotes "*n* is prime").
 - (b) "If n is a prime number then n is odd" is a predicate, which we would translate as $P(n) \implies O(n)$ (where O(n) denotes "n is odd").
 - (c) "Is 13 a prime number?" is neither a statement nor a predicate.
 - (d) "Every even number is the sum of two odd numbers" is a statement, which we would symbolise as $(\forall n)(E(n) \implies (\exists m, k)(O(m) \land O(k) \land S(m, k, n)))$ (where E(n) denotes "n is even" and S(m, k, n) denotes "m + k = n").
- **2.** (a) We have the truth table

A	B	(A	\implies	\sim	B)	\wedge	(A	\implies	B)
Т	Т	Т	F	F	Т	F	Т	Т	Т
Т	F	Т	Т	Т	F	F	Т	\mathbf{F}	F
\mathbf{F}	Т	F	Т	\mathbf{F}	Т	Т	\mathbf{F}	Т	Т
\mathbf{F}	F	F	F T T T	Т	\mathbf{F}	Т	\mathbf{F}	Т	F

From this we see that the main column contains a mixture of Ts and Fs, so the statement is neither a tautology nor a contradiction.

(b) We have the truth table

A	В	(A	\implies	B)	\wedge	$(\sim$	A	\implies	B)
Т	Т	Т	Т	Т	Т	F	Т	Т	Т
Т	F	Т	\mathbf{F}	\mathbf{F}	F	F	Т	Т	F
\mathbf{F}	Т	F	Т	Т	Т	Т	\mathbf{F}	Т	Т
\mathbf{F}	\mathbf{F}	\mathbf{F}	Т	\mathbf{F}	F	Т	\mathbf{F}	T T T F	F

Again we see that this is neither a tautology nor a contradiction.

(c) We have the truth table

A	B	(A	\iff	B)	\vee	(A	\iff	\sim	B)
Т	Т	Т	Т	Т	Т	Т	\mathbf{F}	F	Т
Т	F	Т	\mathbf{F}	\mathbf{F}	Т	Т	Т	Т	\mathbf{F}
\mathbf{F}	Т	\mathbf{F}	\mathbf{F}	Т	Т	F	Т	\mathbf{F}	Т
\mathbf{F}	F	F	T F F T	F	Т	F	F	Т	\mathbf{F}

This time the main column has all Ts so this is a tautology.

(d) We have the truth table

A	B	\sim	(B	\implies	A)	\implies	\sim	A
Т	Т	F	Т	Т	Т	Т	F	Т
Т	F	\mathbf{F}	\mathbf{F}	Т	Т	Т	F	Т
\mathbf{F}	Т	Т	Т	\mathbf{F}	\mathbf{F}	Т	Т	\mathbf{F}
\mathbf{F}	F	\mathbf{F}	\mathbf{F}	Т	\mathbf{F}	T T T T	Т	F

Again we see that this statement is a tautology.

3. (a) We have the truth table

A	В	(A	\implies	B)	\iff	\sim	(A	\wedge	\sim	B)
Т	Т	Т	Т	Т	Т	Т	Т	F	F	Т
Т	F	Т	\mathbf{F}	\mathbf{F}	Т	F	Т	Т	Т	F
\mathbf{F}	Т	\mathbf{F}	Т	Т	Т	Т	\mathbf{F}	\mathbf{F}	\mathbf{F}	Т
F	F	\mathbf{F}	Т	F	T T T T	Т	\mathbf{F}	F	Т	\mathbf{F}

We see that the main column contains only Ts so the statement is a tautology.

(b) We have the truth table

A	B	$(\sim$	A	\implies	(B	\wedge	\sim	B))	\iff	A
Т	Т	F	Т	Т	Т	F	F	Т	Т	Т
Т	F	\mathbf{F}	Т	Т	\mathbf{F}	\mathbf{F}	Т	\mathbf{F}	Т	Т
\mathbf{F}	Т	Т	\mathbf{F}	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}	Т	Т	F
F	F	Т	\mathbf{F}	F	\mathbf{F}	\mathbf{F}	Т	F	T T T T	F

Again we see that the main column contains only Ts so the statement is a tautology.

4. (a) The contrapositive of A(n) is "If $n^2 - 1$ is odd then n is even".

- (b) The converse of A(n) is "If $n^2 1$ is even then n is odd".
- (c) The negation of A(n) is "n is odd and $n^2 1$ is odd".
- (d) A(n) is true for some $n \in \mathbb{N}$: for example, A(1) is true (since 1 is odd and $0 = 1^2 1$ is even).
- (e) A(n) is true for all $n \in \mathbb{N}$. We give a direct proof. Suppose n is odd. Then n = 2k + 1 for some $k \in \mathbb{Z}$, and so $n^2 1 = 4k^2 + 4k + 1 1 = 2(2k^2 + 2k)$, and $2k^2 + 2k \in \mathbb{Z}$, so $n^2 1$ is even.
- (f) By (d) and (e), the contrapositive is true for some $n \in \mathbb{N}$, and indeed for all $n \in \mathbb{N}$, since it is equivalent to A(n) itself.
- (g) The converse of A(n) is true for some $n \in \mathbb{N}$: for example the converse of A(2) is (vacuously) true since $2^2 1 = 3$ is not even.
- (h) The converse of A(n) is true for all $n \in \mathbb{N}$. We give a proof by contraposition. So suppose that n is not odd. Then n is even, so n = 2k for some $k \in \mathbb{Z}$, and so $n^2 1 = 4k^2 1 = 2(2k^2) 1$, and $2k^2 \in \mathbb{Z}$, so $n^2 1$ is odd. Hence, by contraposition, if $n^2 1$ is even then n is odd.