MATHS 255 Solutions to Regular Tutorial $26/5/03$

- 1. We know that $-|a| \le a \le |a|$ and $-|b| \le b \le |b|$. Adding these two inequalities we get $-|a| |b| \le$ $a + b \leq |a| + |b|$, i.e. $-(|a| + |b|) < a + b \leq |a| + |b|$, so $|a + b| \leq |a| + |b|$.
- 2. Put $a = x y$, $b = y z$. Then $a + b = (x y) + (y z) = x z$, so from Question 1 we have $|x - z| = |a + b| \le |a| + |b| = |x - y| + |y - z|$, i.e. $|x - z| \le |x - y| + |y - z|$.

What this says is that the distance from x to z is less than or equal to the distance from x to y plus the distance from y to z. Thinking of x, y and z as corners of a triangle, it asserts that it is no further to go directly from x to z than to go from x to y and from there to z.

- **3.** To say that (s_n) does not converge to L is to say that there is some $\varepsilon > 0$ such that for every $N \in \mathbb{N}$ there is an $n \in \mathbb{N}$ with $n \geq N$ such that $|s_n - L| > \varepsilon$.
- 4. Let L and M be limits of the sequence (s_n) . Suppose, for a contradiction, that $L \neq M$. Then $|L - M| > 0$. Put $\varepsilon = \frac{|L - M|}{2}$ $\frac{-M}{2}$. Then $\varepsilon > 0$, so there exists $N_1 \in \mathbb{N}$ such that if $n \geq N_1$ then $|s_n-L| < \varepsilon$, and there exists $N_2 \in \mathbb{N}$ such that if $n \ge N_2$ then $|s_n-M| < \varepsilon$. Put $N = \max\{N_1, N_2\}$, and put $n = N + 1$. Then $n \geq N_1$ and $n \geq N_2$, so $|s_n - L| < \varepsilon$ and $|s_n - M| < \varepsilon$. But then $|L - s_n| < \varepsilon$, so by the triangle inequality we have

$$
|L - M| = |(L - s_n) + (s_n - M)|
$$

\n
$$
\leq |L - s_n| + |s_n - M|
$$

\n
$$
< \varepsilon + \varepsilon
$$

\n
$$
= 2\varepsilon
$$

\n
$$
= |L - M|,
$$

i.e. $|L - M| < |L - M|$. This is impossible, so we cannot have $L \neq M$, so $L = M$ as required.

5. Let $\varepsilon > 0$. Put $\delta = \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$. Then $\delta > 0$, so there exists $N_1 \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ with $n \ge N_1$, $|a_n - L| < \delta$, and there exists $N_2 \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ with $n \ge N_2$, $|b_n - M| < \delta$. Put $N = \max\{N_1, N_2\}$. Let $n \in \mathbb{N}$ with $n \geq N$. Then $n \geq N_1$ and $n \geq N_2$, so $|a_n - L| < \delta$ and $|b_n - M| < \delta$, so

$$
|c_n - (L + M)| = |a_n + b_n - L - M|
$$

= |(a_n - L) + (b_n - M)|

$$
\le |a_n - L| + |b_n - M|
$$

= $\delta + \delta$
= 2δ
= ε ,

i.e. $|c_n - (L + M)| < \varepsilon$, as required.