MATHS 255

Solutions for Regular Tutorial 28/4/03

1. (a) Let $x \in \mathbb{Z}$. Then we have

$$(-x) + x = x + (-x)$$
(commutative law)
= 0 (definition of $-x$)

so by definition of -(-x), -(-x) = x.

(b) Let $x \in \mathbb{Z}$. Then we have

(definition of	$x + (-1) \cdot x = 1 \cdot x + (-1) \cdot x$
(commutative la	$= x \cdot 1 + x \cdot (-1)$
(distributive la	$= x \cdot (1 + (-1))$
(definition of -	$= x \cdot 0$
(commutative la	$= 0 \cdot x$
(proved in lectur	= 0.

Hence, by definition of -x, $-x = (-1) \cdot x$.

2. Suppose that $a, b, c, x, y \in \mathbb{Z}$ with $c \mid a$ and $c \mid b$. Then there exist $p, q \in \mathbb{Z}$ with a = cp and b = cq. But then

$$ax + by = (cp)x + (cq)y = c(px + qy),$$

and $(px + qy) \in \mathbb{Z}$, so $c \mid ax + by$ as required.

- 3. (a) Suppose that r and r + s are not relatively prime. Then there is some d > 1 such that d | r and d | r + ss. But then, by the previous question, d | r ⋅ (-1) + (r + s) ⋅ 1, i.e. d | s. Thus d is a common divisor of r and s, so r and s are not relatively prime. Hence, by contraposition, if r and s are relatively prime then so are r and r + s.
 - (b) Suppose there exist $x, y \in \mathbb{Z}$ with rx + sy = 1. Put $d = \gcd(r, s)$. Then, by the previous question, $d \mid 1$, so d = 1. So r and s are relatively prime.
- **4.** Let $x, y \in \mathbb{Z}$ with x + 1 = y + 1. Suppose, for a contradiction, that $x \neq y$. Then x < y or y < x: without loss of generality (WLOG) we have x < y. We also have y < y + 1 = x + 1. So we have x < y < x + 1, contradicting the fact that x + 1 is an immediate successor of x. Hence by contradiction we cannot have $x \neq y$, so x = y as required.