MATHS 255

Solutions for Regular Tutorial 31/3/03

- 1. (a) Let $x, y \in A$ with $x\rho y$ and $y\rho x$. Then, by transitivity, $x\rho x$. But this contradicts irreflexivity. So there are no such x and y and hence, vacuously, ρ is antisymmetric.
 - (b) We must show that \leq is reflexive, antisymmetric and transitive.

Reflexive: Let $x \in A$. Then x = x so $x \preceq x$.

- **Antisymmetric:** Let $x, y \in A$ with $x \leq y$ and $y \leq x$. Suppose, for a contradiction, that $x \neq y$. Then we must have $x \leq y$ and $y \leq x$. But then, by (a), we have x = y after all, a contradiction. So we must have x = y, as required.
- **Transitive:** Let $x, y, z \in A$ with $x \leq y$ and $y \leq z$. Then $x \rho y$ or x = y, and $y \rho z$ or y = z. If x = y then since $y \leq z$ we have $x \leq z$. Similarly if y = z then since $x \leq y, x \leq z$. So suppose $x \neq y \neq z$. Then $x \rho y$ and $y \rho z$, so $x \rho z$ (since ρ is transitive), so $x \leq z$ as required.
- **2.** We have the diagram

- **3.** We must show that r is an upper bound for $A \cup B$, and that it is the least upper bound.
 - **upper bound:** let $x \in A \cup B$. Then $x \in A$ or $x \in B$. If $x \in A$ then $x \preceq p$ (since p is an upper bound for A) and $p \preceq r$ (since r is an upper bound for $\{p,q\}$) so $x \preceq r$. Similarly if $x \in B$ then $x \preceq q \preceq r$, so $x \preceq r$. So either way we must have $x \preceq r$, so r is an upper bound for $A \cup B$.
 - **least:** Let s be an upper bound for $A \cup B$. For every $x \in A$, we have $x \in A \cup B$, so $x \preceq s$. Thus s is an upper bound for A, and $p = \sup A$, so $p \preceq s$. Similarly, if $y \in B$ then $y \in A \cup B$ so $y \preceq s$. Thus s is an upper bound for B, so $q \preceq s$. Thus s is an upper bound for $\{p,q\}$, so $\sup\{p,q\} \preceq s$, i.e. $r \preceq s$, as required.