DEPARTMENT OF MATHEMATICS

MATHS 255

- Solutions for Regular Tutorial 17/3/03
- 1. The problem is that there might be some values of x and y for which $x < y \implies f(x) < f(y)$ and others for which $x < y \implies f(x) > f(y)$. For f to be strictly monotone we would have to get the same answer for all x and y.

To understand the distinction, consider the difference between "Every child at the school is a girl or a boy" with "All the children at the school are girls, or all of them are boys". The second statement asserts that it is a single-sex school, the first merely asserts that all the pupils are human!

- **2.** (a) $\emptyset \in \emptyset$: False(d) $\emptyset \subseteq \{\emptyset\}$: True(g) $\{\emptyset\} \in \{\emptyset\}$: False(b) $\emptyset \subseteq \emptyset$: True(e) $\emptyset = \{\emptyset\}$: False(h) $\{\emptyset\} \subseteq \emptyset$: False(c) $\emptyset \in \{\emptyset\}$: True(f) $\{\emptyset\} \in \emptyset$: False(i) $\{\emptyset\} \subseteq \{\emptyset\}$: True
- **3.** (a) $\bigcup_{n \in N} A_n = \mathbb{N}$. (b) $\bigcap_{n \in N} A_n = \{1\}$.
- 4. (a) Let $x \in \bigcup_{a \in S} \{a\}$. Then $x \in \{a\}$ for some $a \in S$. But then x = a, so $x \in S$. Hence $\bigcup_{a \in S} \{a\} \subseteq S$. Conversely, let $y \in S$. Then $y \in \{y\}$, so there is some $a \in S$ (namely a = y) with $y \in \{a\}$. So $y \in \bigcup_{a \in S} \{a\}$. Hence $\bigcup_{a \in S} \{a\} \subseteq S$. Combining these we have $\bigcup_{a \in S} \{a\} = S$.
 - (b) Let $x \in \bigcup_{A \in \mathcal{P}(S)} A$. Then $x \in A$ for some $A \in \mathcal{P}(S)$. Since $A \in \mathcal{P}(S)$, $A \subseteq S$, and $x \in A$, so $x \in S$. Thus $\bigcup_{A \in \mathcal{P}(S)} A \subseteq S$. Conversely, let $y \in S$. Then $\{y\} \subseteq S$, so $\{y\} \in \mathcal{P}(S)$. So there is some $A \in \mathcal{P}(S)$ (namely $A = \{y\}$) with $y \in A$. So $y \in \bigcup_{A \in \mathcal{P}(S)} A$. Hence $S \subseteq \bigcup_{A \in \mathcal{P}(S)} A$. Combining these we have $\bigcup_{A \in \mathcal{P}(S)} A = S$.
- 5. Let $B \in \mathcal{P}(A_{n+1})$. [We want to show that $B \in \mathcal{P}(A_n) \cup \{S \cup \{n+1\} : S \in \mathcal{P}(A_n)\}$, i.e. that $B \in \mathcal{P}(A_n)$ or $B \in \{S \cup \{n+1\} : S \in \mathcal{P}(A_n)\}$.] Either $n+1 \in B$ or $n+1 \notin B$. If $n+1 \notin B$ then $B \subseteq A_{n+1} = A_n \cup \{n+1\}$, and $n+1 \notin B$, so $B \subseteq A_n$. Thus in this case $B \in \mathcal{P}(A_n)$. On the other hand, if $n+1 \in B$, put $C = B \setminus \{n+1\}$. Then $C \subseteq A_n$ and so $C \in \mathcal{P}(A_n)$, so $B = C \cup \{n+1\} \in \{S \cup \{n+1\} : S \in \mathcal{P}(A_n)\}$. So in either case we have $B \in \mathcal{P}(A_n) \cup \{S \cup \{n+1\} : S \in \mathcal{P}(A_n)\}$. Hence $\mathcal{P}(A_{n+1} \subseteq \mathcal{P}(A_n) \cup \{S \cup \{n+1\} : S \in \mathcal{P}(A_n)\}$. Conversely, suppose that $D \in \mathcal{P}(A_n) \cup \{S \cup \{n+1\} : S \in \mathcal{P}(A_n)\}$. Then $D \in \mathcal{P}(A_n) \cup \{S$ or $D \in \{n+1\} : S \in \mathcal{P}(A_n)\}$. In the first case we have $D \subseteq A_n \subseteq A_{n+1}$. In the second case, $D = S \cup \{n+1\}$ for some $S \in \mathcal{P}(A_n)$. Let $x \in D$. Then $x \in S \subseteq A_n$, or x = n+1. Either way, $x \in A_{n+1}$. Thus $D \subseteq A_{n+1}$. Since this holds in either case, we must have $D \subseteq A_{n+1}$, i.e. $D \in \mathcal{P}(A_{n+1})$. Thus $\mathcal{P}(A_n) \cup \{S \cup \{n+1\} : S \in \mathcal{P}(A_n)\}$.

Combining these we have $\mathcal{P}(A_{n+1}) = \mathcal{P}(A_n) \cup \{ S \cup \{n+1\} : S \in \mathcal{P}(A_n) \}.$