Department of Mathematics

MATHS 255

Regular Tutorial 26/5/03

- **1.** Let $a, b \in \mathbb{R}$. Prove that $|a + b| \le |a| + |b|$. [Hint: add together the two inequalities $-|a| \le a \le |a|$ and $-|b| \le b \le |b|$.]
- **2.** Use the result of Question 1 to deduce the *triangle inequality*: for any $x, y, z \in \mathbb{R}$ we have $|x z| \le |x y| + |y z|$. Recall that |x y| can be thought of as the distance from x to y: why do you think this result is called the triangle inequality?
- **3.** Recall that a sequence (s_n) converges to L if for all $\varepsilon > 0$ there is some $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ with $n \ge N$, $|s_n L| < \varepsilon$. What does it mean to say that (s_n) does not converge to L?
- **4.** Show that if a sequence (s_n) in \mathbb{R} has a limit, then the limit is unique.
- **5.** Let (a_n) and (b_n) be sequences in \mathbb{R} . Suppose that $a_n \to L$ and $b_n \to M$ as $n \to \infty$. Define a new sequence (c_n) by declaring that $c_n = a_n + b_n$. Show that $c_n \to L + M$ as $n \to \infty$.