MATHS 255

- **1.** A relation ρ on a set A is said to be *irreflexive* if for all $x \in A$, $x \not o x$. It is an SPO if it is irreflexive and transitive.
 - (a) Show that if ρ is an SPO then ρ is antisymmetric.
 - (b) Show that if ρ is an SPO then the relation \leq defined by declaring that

$$x \preceq y \iff (x \ \rho \ y \lor x = y)$$

is a partial order.

- **2.** Let $A = \{ n \in \mathbb{N} : n \mid 36 \}$. Draw a lattice diagram for the poset (A, |).
- **3.** Let (S, \preceq) be a poset, and let $A, B \subseteq S, p, q, r \in S$. Suppose that
 - $p = \sup A;$
 - $q = \sup B$; and
 - $r = \sup\{p,q\}.$

Show that r is a least upper bound for $A \cup B$. [Hint: in fact, for $s \in S$, s is an upper bound for $A \cup B$ iff s is an upper bound for $\{p, q\}$. You should **not** use this fact without proof, but it may guide you in finding your proof that $r = \sup(A \cup B)$.]