MATHS 2	255
---------	-----

Regular Tutorial 17/3/03

1. A function $f : \mathbb{R} \to \mathbb{R}$ is strictly monotone if $(\forall x, y \in \mathbb{R})(x < y \implies f(x) < f(y)) \lor (\forall x, y \in \mathbb{R})(x < y \implies f(x) > f(y))$. It is one-to-one if $(\forall x, y \in \mathbb{R})(f(x) = f(y) \implies x = y)$.

What is wrong with the following "proof" that if f is one-to-one then f is strictly monotone?

Suppose f is one-to-one. Let $x, y \in \mathbb{R}$ with x < y. Then $x \neq y$, and by contraposition $x \neq y \implies f(x) \neq f(y)$, so $f(x) \neq f(y)$. So f(x) < f(y) or f(y) < f(x). So either $x < y \implies f(x) < f(y)$ or $x < y \implies f(x) < f(y)$. Hence f is strictly monotone.

[Not only is the proof wrong, but the result is not true. For example, the function $f : \mathbb{R} \to \mathbb{R}$ given by f(x) = 1/x for $x \neq 0$ and f(0) = 0 is one-to-one but not strictly monotone.]

- 2. Which of the following are true and which are false?
 - (a) $\emptyset \in \emptyset$.(d) $\emptyset \subseteq \{\emptyset\}$.(g) $\{\emptyset\} \in \{\emptyset\}$.(b) $\emptyset \subseteq \emptyset$.(e) $\emptyset = \{\emptyset\}$.(h) $\{\emptyset\} \subseteq \emptyset$.(c) $\emptyset \in \{\emptyset\}$.(f) $\{\emptyset\} \in \emptyset$.(i) $\{\emptyset\} \subseteq \{\emptyset\}$.
- **3.** For $n \in \mathbb{N}$, let $A_n = \{1, 2, \dots, n\}$.
 - (a) Find $\bigcup_{n \in N} A_n$.
 - (b) Find $\bigcap_{n \in \mathbb{N}} A_n$.
- 4. Let S be a set.
 - (a) Show that $\bigcup_{a \in S} \{a\} = S$.
 - (b) Show that $\bigcup_{A \in \mathcal{P}(S)} A = S$.
- **5.** As before, for $n \in \mathbb{N}$ let $A_n = \{1, 2, ..., n\}$. Show that $\mathcal{P}(A_{n+1}) = \mathcal{P}(A_n) \cup \{S \cup \{n+1\} : S \in \mathcal{P}(A_n)\}.$