MATHS 255 Solutions to Collaborative Tutorial $5/5/03$

1. We use the extended Euclid's Algorithm:

 $n \quad x \quad y$ 35 1 0 r_1 25 0 1 r_2 10 1 $-1 \mid r_3 = r_1 - r_2$ 5 -2 3 $r_4 = r_2 - 2r_3$ 0 5 $-7 | r_5 = r_3 - 2r_4$

From this we see that $gcd(35, 25) = 5 = 35 \cdot (-2) + 25 \cdot 3$. Since $5 \nmid 12$, $35x + 25y = 12$ has no solutions. Since $15 = 5 \cdot 3$, we have $15 = 35 \cdot (-6) + 25 \cdot 9$, so the general solution in $15 =$ $35(-6 - t\frac{25}{5})$ $(\frac{25}{5})+25(9+t\frac{35}{5})$ $\frac{35}{5}$) = 25(-6 - 5t) + 25(9 + 7t) for $t \in \mathbb{Z}$, in other words $x = -6 - 5t$, $y = 9 + 7t$ for $t \in \mathbb{Z}$.

2. (a) Again, we use the extended Euclid's Algorithm:

n	x	y	
15	0	1	r_1
6	1	0	r_2
3	-2	1	$r_3 = r_1 - r_2$
0	5	-2	$r_4 = r_2 - 2r_3$

From this we see that $gcd(6, 15) = 3 = 6 \cdot (-2) + 15 \cdot 1$, and $9 = 3 \cdot 3$, so the particular solution of the equation is $9 = 6 \cdot (-6) + 15 \cdot 3$ and the general solution is $x = -6 - \frac{15}{3}$ $\frac{15}{3}t = -6 - 5t,$ $y = 3 + \frac{6}{3}t = 3 + 2t$ for $t \in \mathbb{Z}$.

- (b) From (a) we know that $\overline{6} \cdot_{15} \overline{x} = \overline{9}$ iff $\overline{x} = \overline{-6 5t} = \overline{-6} 5\overline{t}$ for some $t \in \mathbb{Z}$. But there are only three values for $\overline{5t}$, namely $\overline{0}$, $\overline{5}$ and $\overline{10}$. So the solutions are $\overline{-6}$, $\overline{-6}$ $\overline{-5}$ and $\overline{-6}$ $\overline{-10}$, in other words $\overline{-6}$, $\overline{-11}$ and $\overline{-16}$, or $\overline{9}$, $\overline{4}$ and $\overline{14}$.
- **3.** Suppose a and c are relatively prime and b and c are relatively prime. Then there exist $x, y, x', y' \in \mathbb{Z}$ with

$$
1 = ax + cy \tag{1}
$$

$$
1 = bx' + cy'
$$
 (2)

Mutliplying (2) by a gives $a = abx' + acy'$. Substituting this value of a in to (1) gives $1 = (abx' + b)$ $acy')x + cy = (ab)(xx') + c(ay'x + y)$. Since $xx' \in \mathbb{Z}$ and $ay'x + y \in \mathbb{Z}$, this shows us that ab and c are relatively prime.