Department of Mathematics

MATHS 255

Solutions to Collaborative Tutorial 7/4/03

1. Suppose first that F is one-to-one. [We want to show f is one-to-one.] Let $x, y \in A$ with f(x) = f(y). Put $X = \{x\}, Y = \{y\}$. Then $F(X) = \{f(x)\} = \{f(y)\} = F(Y)$, so F(X) = F(Y), so X = Y, i.e. $\{x\} = \{y\}$. Since $x \in \{x\}$ we have $x \in \{y\}$, so x = y.

Conversely, suppose f is one-to-one, and let $X, Y \in \mathcal{P}(A)$ with F(X) = F(Y). We want to show that X = Y. So let $x \in X$. Then $f(x) \in \{f(a) : a \in X\}$, i.e. $f(x) \in F(X) = F(Y)$, so $f(x) \in F(Y) = \{f(a) : a \in Y\}$. Thus f(x) = f(a) for some $a \in Y$. Since f is one-to-one, this implies x = a, so since $a \in Y$ we have $x \in Y$. Thus $X \subseteq Y$. Conversely, let $y \in Y$. Then

$$f(y) \in F(Y) = F(X) = \{ f(b) : b \in X \}$$

so there is some $b \in X$ with f(y) = f(b), so $y = b \in X$, so $y \in X$. Hence $Y \subseteq X$, so X = Y as required.

- **2.** We must show f^{-1} is one-to-one and onto.
 - **One-to-one:** Let $x, y \in B$ with $f^{-1}(x) = f^{-1}(y)$. Then $f(f^{-1}(x)) = f(f^{-1}(y))$, i.e. x = y, as required.
 - **Onto:** Let $a \in A$. [We must find some $x \in B$ with $f^{-1}(x) = a$. The only element of B that we know of is f(a), so let us hope that it works...] Put x = f(a). Then $f^{-1}(x) = f^{-1}(f(a)) = a$, as required.
- **3.** Suppose first that x is maximal in A. [We want to show that f(x) is maximal in B, i.e. that if $z \in B$ with $f(x) \preceq_B z$ then f(x) = z.] Let $z \in B$ with $f(x) \preceq_B z$. Since f is an order-isomorphism, it is onto, so there is some $y \in A$ with f(y) = z. So $f(x) \preceq_B f(y)$, so $x \preceq_A y$, so (since x is maximal) x = y, so f(x) = f(y), i.e. f(x) = z as required.

Conversely, suppose f(x) is maximal. Let $y \in A$ with $x \preceq_A y$. Then $f(x) \preceq_B f(y)$. By maximality of f(x), f(x) = f(y), so (since f is one-to-one) x = y, as required.

4. Suppose, for a contradiction, that A and B were order-isomorphic. Then there would be some orderisomorphism $f: A \to B$. Now, if $x \in A$ then $x = 1 - \frac{1}{n}$ for some $n \in \mathbb{N}$, and $1 - \frac{1}{n} < 1 - \frac{1}{n+1} \in A$, so x is not maximal in A. Thus f(x) is not maximal in B. Now 1 is maximal in B, so there is no $x \in A$ with f(x) = 1, so f is not onto, contradicting the assumption that f is an order-isomorphism.