MATHS 255

Solutions to Collaborative Tutorial 24/3/03

(a) Let P_n be the statement "for all x ∈ ℝ, f(nx) = nf(x)".
Base case: P₁ is true because for any x ∈ ℝ we have f(1x) = f(x) = 1f(x).
Inductive step: Let n ∈ ℕ, and suppose P_n is true. Let x ∈ ℝ. Then

$$f((n+1)x) = f(nx + x)$$

= $f(nx) + f(x)$ (by (*))
= $nf(x) + f(x)$ (by ind. hyp.)
= $(n+1)f(x)$.

Hence P_{n+1} is true.

Hence, by induction, P_n is true for all n.

- (b) By (*) we have f(0+0) = f(0) + f(0), i.e. f(0) = f(0) + f(0). Subtracting f(0) from both sides we get 0 = f(0).
- (c) By (*) we have f(x + (-x)) = f(x) + f(-x), so f(x) + f(-x) = f(0) = 0. Subtracting f(x) from both sides gives f(-x) = -f(x).
- (d) Let $n \in \mathbb{Z}$, $x \in \mathbb{R}$. If n > 0 then f(nx) = nf(x) by (a). If n = 0 then f(nx) = f(0) = 0 = nf(x) by (b). If n < 0 then $-n \in \mathbb{N}$, so f((-n)x) = (-n)f(x) by (a). So, by (c), f(nx) = -f(-(nx)) = -f((-n)x) = -(-n)f(x) = nf(x).
- (e) Let $x \in \mathbb{R}$, $n \in \mathbb{N}$. Put $y = \frac{x}{n}$. Then, by (d), f(ny) = nf(y), i.e. $f(n\frac{x}{n}) = nf(\frac{x}{n})$, so $f(x) = nf(\frac{x}{n})$. Dividing by n gives $\frac{1}{n}f(x) = f(\frac{x}{n})$.
- (f) Let $q \in \mathbb{Q}$ and $x \in \mathbb{R}$. Then $q = \frac{m}{n}$ for some $m \in \mathbb{Z}$, $n \in \mathbb{N}$. Applying (e) we have $f(\frac{x}{n}) = \frac{1}{n}f(x)$, so

$$f(qx) = f(\frac{m}{n}x)$$

= $f(m(\frac{x}{n}))$
= $mf(\frac{x}{n})$ (by (d))

$$= m\frac{1}{n}f(x), \qquad (by (e))$$

so f(qx) = qf(x) as required.

- **2.** (a) When we start with n = 63, we get the sequence 63, 64, 6, 7, 8, 3, 4, 2, 1. When we start with n = 60 we get 60, 61, 62, 63, 64, 6, 7, 8, 3, 4, 2, 1.
 - (b) If we start with n = 33 we get 33, 34, 35, ..., until we reach 60, 61, 62, and so on and are into the sequence above.
 - (c) Let P_n be the statement that the algorithm terminates if we start with the value n.

Base case: if we start with n = 1 the algorithm terminates immediately.

Inductive step: Let $n \in \mathbb{N}$ and suppose P_j is true for all $1 \leq j \leq n$. By the hint, we know there is some k with $2^k \leq n+1 < 2^{k+1}$. If $2^k = n+1$, then the sequence will begin n+1, k, \ldots . Now, $k < 2^k$ so k < n+1 so by inductive hypothesis P_k is true. So, if we had started with k, the sequence would terminate. So, since we have reached a value of k we know that the sequence will terminate.

Suppose instead that we have $2^k < n + 1 < 2^{k+1}$. Then the sequence will begin n + 1, $n + 2, \ldots, 2^{k+1} - 1, 2^{k+1}, k + 1, \ldots$. If $k + 1 \leq n$ then we know that P_{k+1} is true (by ind. hyp.) so as before we know the sequence terminates. Now, $k < 2^k < n + 1$, so $k + 1 \leq 2^k \leq n$, since for any $m, n \in \mathbb{N}$ we have $m < n \iff M = 1 \leq n$. So $k + 1 \leq n$, as required.

So, either way, the sequence terminates when we start with n + 1, i.e. P_{n+1} is true.

Hence, by induction, P_n is true for all $n \in \mathbb{N}$.

- **3.** (a) ρ is not reflexive because $\emptyset \in A$ and $\emptyset \not o \emptyset$.
 - (b) ρ is symmetric: let $x, y \in A$ with $x \rho y$. Then $x \cap y \neq \emptyset$, so $y \cap x \neq \emptyset$, so $y \rho x$.
 - (c) ρ is not antisymmetric. Choose $a, b \in A$ with $a \neq b$. Then $\{a\} \in A$ and $\{a, b\} \in A$ and $\{a, b\}$ and $\{a, b\} \rho$ $\{a\}$ but $\{a\} \neq \{a, b\}$.
 - (d) ρ is not transitive. Let a and b be as above. Then $\{a\} \rho \{a, b\}$ and $\{a, b\} \rho \{b\}$ but $\{a\} \not \{b\}$.