MATHS 255

Collaborative Tutorial 7/4/03

1. Let $f: A \to B$ be a function. Define a new function $F: \mathcal{P}(A) \to \mathcal{P}(B)$ by declaring that, for $S \subseteq A$,

$$F(S) = \{ f(a) : a \in S \}.$$

Show that F is one-to-one if and only if f is one-to-one.

- **2.** Let $f: A \to B$ be a bijection. This tells us that $f^{-1}: B \to A$ exists and is a function. Prove that f^{-1} is also a bijection.
- **3.** Let (A, \preceq_A) and (B, \preceq_B) be posets and $f: A \to B$ an order-isomorphism. Let $x \in A$. Show that x is maximal in A iff f(x) is maximal in B. [Recall that x is maximal if there does not exist any $z \in A$ with $x \prec_A z$: this is equivalent to saying that if $x \preceq_A z$ then x = z.]
- **4.** Let $A = \{1 \frac{1}{n} : n \in \mathbb{N}\}$ and let $B = A \cup \{1\}$, both ordered with the usual \leq order they get as subsets of \mathbb{R} . Use the result of the previous question to show that A and B are **not** order-isomorphic.