MATHS 255

Collaborative Tutorial 24/3/03

1. Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Suppose that for all $x, y \in \mathbb{R}$ we have

$$f(x+y) = f(x) + f(y).$$
 (*)

We will show that f(qx) = qf(x) for every $q \in \mathbb{Q}$ and $x \in \mathbb{R}$.

- (a) Use induction on n to show that for any $n \in \mathbb{N}$ and $x \in \mathbb{R}$ we have f(nx) = nf(x).
- (b) Use the fact that 0 + 0 = 0 and (*) to show that f(0) = 0.
- (c) Use the fact that x + (-x) = 0 and (*) to show that f(-x) = -f(x) for all $x \in \mathbb{R}$.
- (d) Put these together to deduce that f(nx) = nf(x) for all $n \in \mathbb{Z}, x \in \mathbb{R}$.
- (e) Use the fact that this holds for $y = \frac{x}{n}$ to show that $f(\frac{x}{n}) = \frac{1}{n}f(x)$ for all $n \in \mathbb{N}, x \in \mathbb{R}$.
- (f) Deduce that if $q \in \mathbb{Q}$ and $x \in \mathbb{R}$ then f(qx) = qf(x).
- 2. Consider the following algorithm. We start with some number n. If n = 1, we stop. If $n = 2^k$ for some k, we replace our value of n with k. Otherwise we replace it with n + 1. For example, if we start with n = 6 we get the values 6, 7, 8, 3, 4, 2, 1. If we start with n = 28 we get 28, 29, 30, 31, 32, 5, 6, 7, 8, 3, 4, 2, 1.
 - (a) Find the sequence of numbers we get when we start with n = 63, and the sequence we get when we start with n = 60.
 - (b) What do we get if we start with n = 33? (Do not write out the sequence of values in full).
 - (c) For every $n \in \mathbb{N}$ there is a $k \in \mathbb{N}$ with $2^k \leq n < 2^{k+1}$. Since $k < 2^k$ we have k < n. Use this fact to prove by complete induction that the sequence terminates for any starting value of $n \in \mathbb{N}$.
- **3.** Let S be a set with at least 2 elements, and let $A = \mathcal{P}(S)$. Define a relation ρ on A by declaring that, for $x, y \in A$, $x \rho y$ iff $x \cap y \neq \emptyset$. Determine whether or not ρ is (a) reflexive, (b) symmetric, (c) antisymmetric, and (d) transitive.