DEPARTMENT OF MATHEMATICS

MATHS 255	Assignment 8	Due: 14 May 2003

NB: Please deposit your solutions in the appropriate box by 4 p.m. on the due date. Late assignments or assignments placed into incorrect boxes will not be marked. Use a mathematics department cover sheet: these are available from outside the Resource Centre.

- 1. Use the Euclidean Algorithm for $\mathbb{R}[x]$ to find a greatest common divisor in $\mathbb{R}[x]$ of $a(x) = x^3 + x^2 2x 8$ and $b(x) = x^2 - 4x + 4$.
- **2.** Let $a(x), b(x) \in \mathbb{R}[x]$ with $a(x), b(x) \neq 0$. We will show that there exists a greatest common divisor d(x) of a(x) and b(x), and $u(x), v(x) \in \mathbb{R}[x]$ with d(x) = a(x)u(x) + b(x)v(x). Our proof uses a similar idea to the proof of Theorem 16 in the Lecture Notes for Week 6.

 $\text{Put } S = \{ \, c(x) \in \mathbb{R}[x] : (\exists u(x), v(x) \in \mathbb{R}[x]) (c(x) = a(x)u(x) + b(x)v(x)) \, \}. \text{ Put } T = \{ \deg c(x) : c(x) \in S \, \}.$

- (a) Show that $0 \in S$, so $-\infty \in T$.
- (b) Let $T' = T \setminus \{-\infty\}$. Show that T' has a least element, n say.
- (c) Since $n \in T'$, there is some $d(x) \in S$ with $\deg d(x) = n$. Thus there exist $u_d(x), v_d(x)$ with $d(x) = a(x)u_d(x) + b(x)v_d(x)$. Use the Division Algorithm to divide d(x) into a(x), and rearrange your equations to write the remainder as a linear combination of a(x) and b(x). [In other words, show that the remainder is in S.]
- (d) Deduce that the remainder in the previous part must be 0, in other words that $d(x) \mid a(x)$.
- (e) Use a similar argument to show that $d(x) \mid b(x)$.
- (f) Suppose c(x) is a common divisor of a(x) and b(x). Show that $c(x) \mid d(x)$.
- **3.** Let $G = \{\alpha, \beta, \gamma, \delta, \varepsilon\}$. Given that * is a group operation on G, we will complete the following Cayley Table for *:

- (a) What is the identity element for *? This lets us fill in the row and column for that element.
- (b) The "once per row and once per column" rule (which from now on we will refer to as 1R1CR) allows two possibilities for $\beta * \varepsilon$. What are they, and which must be the true value for $\beta * \varepsilon$?
- (c) Any element of a group commutes with its inverse (so for all $x \in G$, if x * y = e then y * x = e). This lets us fill in one more entry since we have found one pair with x * y = e. Which pair is it?
- (d) Again the 1R1CR allows two possibilities for the two entries $\gamma * \beta$ and $\delta * \beta$. What are these possibilities, and which is which?
- (e) We know that $\beta * \beta = \delta$. This lets us find $\delta * \delta$, as

$$\delta * \delta = (\beta * \beta) * (\beta * \beta) = \beta * ((\beta * \beta) * \beta),$$

and by now we know $\beta * x$ and $x * \beta$ for all x. What is $\delta * \delta$?

(f) Use the 1R1CR to find the remaining entries and complete the table.