DEPARTMENT OF MATHEMATICS

|--|

NB: Please deposit your solutions in the appropriate box by 4 p.m. on the due date. Late assignments or assignments placed into incorrect boxes will not be marked. Use a mathematics department cover sheet: these are available from outside the Resource Centre.

- **1.** Let * be an operation on a set A.
 - (a) Show that if * has an identity element, then it is unique.
 - (b) Suppose * is associative and has an identity element e. Let $x \in A$. An *inverse* of x is an element y such that x * y = y * x = e. Show that if x has an inverse, then the inverse is unique (note that when this Assignment was handed out in lectures the word "associative" was omitted in error).
 - (c) Let F be the set of all functions from \mathbb{Z} to \mathbb{Z} . Then \circ is an operation on F, and $1_{\mathbb{Z}}$ is an identity element of F under \circ . Give an example of functions f and g such that $f \circ g = 1_{\mathbb{Z}}$ but $g \circ f \neq 1_{\mathbb{Z}}$. [Hint: f and g must not be bijections: if f is a bijection and $f \circ g = 1_{\mathbb{Z}}$ then $g = (f^{-1} \circ f) \circ g = f^{-1} \circ (f \circ g) = f^{-1}$, i.e. $g = f^{-1}$, so we also have $g \circ f = 1_{\mathbb{Z}}$.]
- 2. For any integers a and b we have $(-a) \cdot b = -(a \cdot b)$. Prove this from the axioms given in the notes. You may use the result proved in lectures that for any n we have $n \cdot 0 = 0$. At each step you should indicate which axiom you are using.
- **3.** Let $a, b \in \mathbb{N}$. Put $g = \gcd(a, b)$ and $l = \operatorname{lcm}(a, b)$. Our goal is to prove that ab = gl.

Since g is a common divisor of a and b we have $p, q \in \mathbb{N}$ with a = pg, b = qg. Put z = pb. Also, we know that there exist $x, y \in \mathbb{Z}$ with g = ax + by. Since l is a common multiple of a and b there exist $m, n \in \mathbb{N}$ with l = am = bn.

- (a) Show that z = qa.
- (b) Deduce that $l \mid z$, so there is some $t \in \mathbb{N}$ with z = lt.
- (c) Show that zg = ab.
- (d) Deduce that $lg \mid ab$.
- (e) Show that gl = axbn + byam (note that this was misprinted as gl = axbn + byan when this Assignment was handed out in lectures).
- (f) Deduce that $ab \mid gl$.
- (g) Deduce that ab = gl.
- 4. Use the modified version of Euclid's Algorithm to find gcd(a, b) and integers x and y with gcd(a, b) = ax + by for the following pairs of integers.
 - (a) 128 and 60.
 - (b) 42 and 16.
 - (c) 1230 and 153.