DEPARTMENT OF MATHEMATICS

MATHS 255	Assignment 5	Due: 9 April 2003

NB: Please deposit your solutions in the appropriate box by 4 p.m. on the due date. Late assignments or assignments placed into incorrect boxes will not be marked. Use a mathematics department cover sheet: these are available from outside the Resource Centre.

1. Let $f: A \to B$ be a function. Define a new function $F: \mathcal{P}(A) \to \mathcal{P}(B)$ by declaring that, for $S \subseteq A$,

$$F(S) = \{ f(a) : a \in S \}.$$

Show that F is onto if and only if f is onto.

- **2.** Let $f: A \to B$ and $g: B \to C$ be functions.
 - (a) Show that if $g \circ f$ is one-to-one and f is onto then g is one-to-one.
 - (b) Show that if $g \circ f$ is onto and g is one-to-one then f is onto.
- **3.** Let $f : A \to B$ be a function, let Λ be a nonempty indexing set, and for each $\alpha \in \Lambda$ let S_{α} be a subset of B.
 - (a) Show that $f^{-1}(\bigcap_{\alpha \in \Lambda} S_{\alpha}) = \bigcap_{\alpha \in \Lambda} f^{-1}(S_{\alpha}).$
 - (b) Show that $f^{-1}(\bigcup_{\alpha \in \Lambda} S_{\alpha}) = \bigcup_{\alpha \in \Lambda} f^{-1}(S_{\alpha}).$
- **4.** Suppose (A, \preceq_A) and (B, \preceq_B) are posets and $f : A \to B$ is a function. Show that f is strictly order preserving if and only if f is one-to one and for all $x, y \in A$,

$$x \prec_A y \iff f(x) \prec_B f(y).$$

[Recall that $x \prec_A y$ means $x \preceq_A y$ and $x \neq y$, and similarly for \prec_B . You may assume the result from lectures that if f is strictly order preserving then it is one-to-one.]

5. Let $f : \mathbb{N} \to \mathbb{N}$ be strictly order preserving, where \mathbb{N} is give its usual ordering \leq . Prove that for all $n \in \mathbb{N}, n \leq f(n)$. [Hint: use induction and the result of the previous question.]