DEPARTMENT OF MATHEMATICS

MATHS 255	Assignment 4	Due: 2 April 2003

NB: Please deposit your solutions in the appropriate box by 4 p.m. on the due date. Late assignments or assignments placed into incorrect boxes will not be marked. Use a mathematics department cover sheet: these are available from outside the Resource Centre.

1. Define a relation \leq on \mathbb{N} by declaring that for $x, y \in \mathbb{N}$,

$$x \preceq y \iff x = y \lor x^2 \le y.$$

Show that \leq is a partial order on \mathbb{N} , but not a total order.

- **2.** Let $A = \{1, 2, 3..., 20\}$ and $B = \{n \in \mathbb{N} : n \mid 20\}.$
 - (a) Draw lattice diagrams for (A, |) and (B, |).
 - (b) Find the least upper bound for $\{1, 2, 5\}$ in B.
 - (c) Find a subset of A which has no least upper bound.
- **3.** Let (A, \preceq) be a poset with the least upper bound property. Let $S \subseteq A$ with $S \neq \emptyset$. Suppose S has at least one lower bound. Put $L_S = \{ b \in A : b \text{ is a lower bound for } S \}$. Show that L_S is nonempty and has at least one upper bound.

From the least upper bound property, we know that $\sup L_S$ exists. Put $g = \sup L_S$. Show that g is a greatest lower bound for S, in other words that

- g is a lower bound for S, and
- if b is a lower bound for S then $b \leq g$.
- **4.** Define a relation ρ on $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ by declaring that, for $(x, y), (u, v) \in \mathbb{R}^2$,

$$(x,y) \ \rho \ (u,v) \iff x^2 + y^2 = u^2 + v^2.$$

Show that ρ is an equivalence relation. What is the equivalence class $T_{(x,y)}$ of the element (x,y)?