Department of Mathematics

MATHS 255	Assignment 3	Due: 26 March 2003

NB: Please deposit your solutions in the appropriate box by 4 p.m. on the due date. Late assignments or assignments placed into incorrect boxes will not be marked. Use a mathematics department cover sheet: these are available from outside the Resource Centre.

- **1.** Show that for all $n \in \mathbb{N}$, $3 \mid n^3 + 2n$.
- **2.** Show that for all $n \ge 4$, $n! > 2^n$.
- **3.** Show that if $m, n \in \mathbb{N}$ then there exist $q, r \in \mathbb{Z}$ with $0 \le r < n$ and m = qn + r. [Hint: use complete induction on m. For the induction step, consider three cases—m + 1 < n, m + 1 = n or m + 1 > n. In the latter case, apply the inductive hypothesis to (m + 1) n.]
- **4.** A function $f : \mathbb{Z} \to \mathbb{Z}$ is a *wibble* function if for all $n \in \mathbb{Z}$, f(n+2) = f(n) + 2. Suppose f and g are wibble functions, and that f(0) = g(0) and f(15) = g(15). Show that f(n) = g(n) for all $n \in \mathbb{Z}$.
- 5. Let ρ be the relation on \mathbb{Z} defined by $x \rho y$ if and only if $x^2 \leq y^2$.
 - (a) Is ρ reflexive?
 - (b) Is ρ symmetric?
 - (c) Is ρ antisymmetric?
 - (d) Is ρ transitive?

In each case give either a proof or a counterexample.