Assignment 11

- **1.** Let (s_n) be a sequence in \mathbb{R} .
 - (a) Show that if (s_n) converges then (s_n) is a Cauchy sequence.
 - (b) Show that if (s_n) is a Cauchy sequence then (s_n) is bounded.
- **2.** Let $f, g: \mathbb{R} \to \mathbb{R}$ be continuous functions. Show that f + g, fg and $f \circ g$ are all continuous.
- **3.** Let $f : \mathbb{R} \to \mathbb{R}$ be a function and let $a, b \in \mathbb{R}$ with $a, b \neq 0$. Define a new function $g : \mathbb{R} \to \mathbb{R}$ by g(x) = af(bx). Prove from first principles that g is continuous. ["From first principles" here means that you should give a proof using ε and δ rather than quoting results such as those in the previous question.]
- **4.** Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Prove that the following are equivalent:
 - (1) f is continuous.
 - (2) for every open set $U, f^{-1}(U)$ is open.
 - (3) for every closed set C, $f^{-1}(C)$ is closed.
 - (4) for every sequence (s_n) in \mathbb{R} and every $a \in \mathbb{R}$, if $s_n \to a$ as $n \to \infty$ then $f(s_n) \to f(a)$ as $n \to \infty$.
- **5.** Let $f, g: \mathbb{R} \to \mathbb{R}$ be differentiable functions. Show that fg is differentiable, with (fg)'(x) = f'(x)g(x) + f(x)g'(x) for all $x \in \mathbb{R}$.