MATHS 255 Assignment 10 Due: 28 May 200	
---	--

NB: Please deposit your solutions in the appropriate box by 4 p.m. on the due date. Late assignments or assignments placed into incorrect boxes will not be marked. Use a mathematics department cover sheet: these are available from outside the Resource Centre.

- **1.** Let F be a field, and let $a, b \in F$ with $b \neq O_F$. Show that the equation a = bx has a unique solution $x \in F$.
- **2.** Let F be an ordered field. Let \leq be the relation defined by $x \leq y \iff (y x \in P \lor x = y)$. Prove that for all $a, b, c \in F$ the following hold.
 - (a) If a < b then a + c < b + c.
 - (b) If $a \leq b$ then $a + c \leq b + c$.
 - (c) If a < b and $0_F < c$ then ac < bc.
 - (d) If $a \in P$ then $\frac{1}{a} \in P$. [Hint: use contradiction: consider the other possibilities for $\frac{1}{a}$.]
 - (e) If $0_F < a < b$ then $0_F < \frac{1}{b} < \frac{1}{a}$. [Hint: multiply (b-a) by $\frac{1}{a} \cdot \frac{1}{b}$.]
- **3.** For each $n \in \mathbb{N}$, let $a_n, b_n \in \mathbb{R}$ with $a_n < b_n$. Suppose that for each $n, [a_{n+1}, b_{n+1}] \subseteq [a_n, b_n]$. The goal of this question is to prove that $\bigcap_{n \in \mathbb{N}} [a_n, b_n] \neq \emptyset$.
 - (a) Let $a, b, c, d \in \mathbb{R}$ with $c \leq d$. Prove that $[c, d] \leq [a, b]$ if and only if $a \leq c$ and $d \leq b$.
 - (b) Let $c \in \mathbb{R}$. Prove that $c \in \bigcap_{n \in \mathbb{N}} [a_n, b_n]$ if and only if c is both an upper bound for $\{a_n : n \in \mathbb{N}\}$ and a lower bound for $\{b_n : n \in \mathbb{N}\}$.
 - (c) Use induction to prove that for all $n, k \in \mathbb{N}$, $a_n \leq a_{n+k}$ and $b_{n+k} \leq b_n$.
 - (d) Deduce that for all $m, n \in \mathbb{N}, a_m \leq b_n$.
 - (e) Show that $\{a_n : n \in \mathbb{N}\}\$ is non-empty and bounded above, so it has a least upper bound. Put $c = \sup\{a_n : n \in \mathbb{N}\}.$
 - (f) Show that c is a lower bound for $\{b_n : n \in \mathbb{N}\}$.
 - (g) Deduce that $\bigcap_{n \in \mathbb{N}} [a_n, b_n] \neq \emptyset$.
- **4.** Let (s_n) be a sequence in \mathbb{R} , and let $L \in \mathbb{R}$. Define new sequences (a_n) and (b_n) by declaring that, for all $n \in \mathbb{N}$, $a_n = s_{2n-1}$ and $b_n = s_{2n}$. Prove that $s_n \to L$ if and only if $a_n \to L$ and $b_n \to L$.