DEPARTMENT OF MATHEMATICS

MATHS 255	Assignment 1	Due: 12 March 2003

NB: Please deposit your solutions in the appropriate box by 4 p.m. on the due date. Late assignments or assignments placed into incorrect boxes will not be marked. Use a mathematics department cover sheet: these are available from outside the Resource Centre.

- 1. Which of the following sentences are statements, which are predicates, and which are neither? Translate all the statements and predicates into symbols.
 - (a) 17 is a prime number.
 - (b) If n is a prime number then n is odd.
 - (c) Is 13 a prime number?
 - (d) Every even number is the sum of two odd numbers.
- **2.** Let A and B be statements. Construct truth tables for the following statements. For each statement, state whether it is a tautology, a contradiction or neither.
 - (a) $(A \implies \sim B) \land (A \implies B)$.
 - (b) $(A \implies B) \land (\sim A \implies B).$
 - (c) $(A \iff B) \lor (A \iff \sim B)$.
 - (d) $\sim (B \implies A) \implies \sim A$.
- **3.** (a) Show that $(A \implies B) \iff \sim (A \land \sim B)$ is a tautology.
 - (b) Show that $(\sim A \implies (B \land \sim B)) \iff A$ is a tautology.
- 4. For any integer n, let A(n) be the statement

"If n is odd then $n^2 - 1$ is even".

- (a) Write down the contrapositive of A(n).
- (b) Write down the converse of A(n).
- (c) Write down the negation of A(n).
- (d) Is A(n) true for some $n \in \mathbb{N}$? If so, give an example, if not give a proof.
- (e) Is A(n) true for every $n \in \mathbb{N}$? If so, give a proof, if not give a counterexample.
- (f) Is the contrapositive of A(n) true for some $n \in \mathbb{N}$? Is it true for all $n \in \mathbb{N}$? Give brief reasons for your answer.
- (g) Is the converse of A(n) true for some $n \in \mathbb{N}$? If so, give an example, if not give a proof.
- (h) Is the converse of A(n) true for all $n \in \mathbb{N}$? If so, give a proof, if not give a counterexample.