- 1. Suppose a, b are some fixed integers and let $A(c)$ be the predicate: "If $c \mid a$ and $c \mid b$ then $c^2 \mid ab$."
	- (a) Write down the negation of $A(c)$.

soln: $c \mid a$, and $c \mid b$, and $c^2 \nmid ab$.

(b) Write down the converse of $A(c)$.

soln: If $c^2 \mid ab$ then $c \mid a$ and $c \mid b$.

- (c) Is $\forall c \in \mathbb{N}$ A(c) true or false. Prove your answer. soln: True. Proof: Let $c \in \mathbb{N}$ be given. Suppose c | a, and c | b. c | a means that $a = kc$ for some $k \in \mathbb{Z}$. Similarly c | b means that $b = \ell c$ for some $\ell \in \mathbb{Z}$. Thus $ab = (kc)(\ell c) = (k\ell)c^2$. Since $k\ell \in \mathbb{Z}$ this shows that $c^2 \mid ab$. Thus $A(c)$ is true.
- 2. (6 marks) Let $S = \{1, 2, 3\}$. State (no working required) whether or not the following relation on S is reflexive, transitive, symmetric and antisymmetric. Thus state whether or not it is an equivalence relation, a partial ordering, both of these or neither. (No working required) $R_1 = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)\}\$ soln: It is: reflexive, not symmetric, transitive, antisymmetric, not an equivalence, and a partial ordering.
- 3. Let ∼ be a relation on N given by $a \sim b$ if and only if there is a prime which is a factor of both a and b. Show whether or not this is an equivalence relation. soln:

It is not an equivalence relation. Proof:

Not transitive: For example take 4, 6 and 9 then $4 \sim 6$ since 2 is a factor of both. $6 \sim 9$ since 3 is a factor of both but 4 and 9 are relatively prime and in particular have no common prime factors. More simply, it is not reflexive, for there is no prime which divides 1.

4. (7 marks) Suppose A, B and C are sets and $f : A \to B$ and $g : B \to C$ are functions. Suppose $g \circ f : A \to C$ is one-one. Prove f is one-one, but g need not be.

soln: Suppose that f is not one-one. Then there are $a_1, a_2 \in A$ with $a_1 \neq a_2$ but $f(a_1) = f(a_2)$. Then $g \circ f(a_1) = g(f(a_1)) = g(f(a_2)) = g \circ f(a_2)$ so this contradicts that $g \circ f : A \to C$ is one-one.

Consider $A = \{1\}$, $B = \{2, 3\}$, $C = \{4\}$. and $f(1) = 1$, $g(2) = 4$, and $g(3) = 4$. Then $g \circ f : A \to C$ is one-one, but g is not.

5. Use the Euclidean algorithm to find a $gcd(x^4 + x^2 + x - 1, x^3 + 1)$ in $\mathbb{R}[x]$. Show the steps in the calculation.

soln: $x^4 + x^2 + x - 1 = x(x^3 + 1) + x^2 - 1$ $x^3 + 1 = x(x^2 - 1) + (x + 1)$ $x^2 - 1 = (x - 1)(x + 1)$ So $(x + 1)$ is a gcd $(x⁴ + x² + x - 1, x³ + 1)$.

6. On N with the partial order given by 'divides', define $gcd(a, b, c)$ to be the greatest element of the set of natural numbers which are common divisors of the 3 natural numbers a, b and c. Write $e = \gcd(a, b, c)$ and $f = \gcd(d, c)$ where $d = \gcd(a, b)$. Prove that $e = f$. soln: Since e is a common divisor of a and b we have $e \mid d$. (As d is the $gcd(a, b)$.) Also $e \mid c$ so

 $e \mid f \quad (1)$

as $f = \gcd(d, c)$.

On the other hand $f | d$ and d is a common divisor of a and b so $f | a$ and $f | b$. Also by its definition $f \mid c$ so in fact f is a common divisor of a, b and c. Thus

```
f \mid e \quad (2)
```
as $e = \gcd(a, b, c)$. From (1) and (2) it follows that $e = f$ (since they are both positive integers).