Suppose that X is a poset with a partial ordering ≤. Show that X has at most one least element.
 soln: [5 marks]

Suppose x and y are least elements of X. Then $x \leq y$ since $y \in X$ and x is a least element of X (which means that for all $a \in X, x \leq a$). Similarly $y \leq x$ since $x \in X$ and y is a least element of X. Thus we have $x \leq y$ and $y \leq x$ which implies that x = y since \leq is antisymmetric.

- 2. Explain why the collection of sets A = {2, 3, 7}, B = {4, 5, 6}, C = {1, 8, 3} is not a partition of the set {1, 2, 3, 4, 5, 6, 7, 8}.
 soln: [2 marks]
 Because A ∩ C = {3} and so A ∩ C ≠ Ø as required.
- **3.** Define a relation \sim on the Cartesian plane \mathbb{R}^2 by,

 $(x, y) \sim (u, v)$ if and only if 3x + 2y = 3u + 2v,

for (x, y) and (u, v) elements of \mathbb{R}^2 .

- (a) Show that \sim is an equivalence relation. **soln:** [6 marks] *Reflexive:* Let $(x, y) \in \mathbb{R}^2$. Then 3x + 2y = 3x + 2y, so $(x, y) \sim (x, y)$. *Symmetric:* Let $(x, y), (u, v) \in \mathbb{R}^2$ with $(x, y) \sim (u, v)$. Then 3x + 2y = 3u + 2v, so 3u + 2v = 3x + 2y, that is $(u, v) \sim (x, y)$. *Transitive:* Let $(x, y), (u, v), (z, w) \in \mathbb{R}^2$ with $(x, y) \sim (u, v)$ and $(u, v) \sim (z, w)$. Then 3x + 2y = 3u + 2v and 3u + 2v = 3z + 2w. So 3x + 2y = 3z + 2w, that is $(x, y) \sim (z, w)$.
- (b) Give a geometrical description of the equivalence class [(a, b)].
 soln: [4 marks]
 (x, y) ∈ [(a, b)] ⇔ 3x + 2y = 3a + 2b ⇔ y = -³/₂x + ^{3a+2b}/₂. So [(a, b)] is the (straight) line through the point (0, ^{3a+2b}/₂) with slope -3/2.
- **4.** Prove that if functions $f: A \to B$ and $g: B \to C$ are one-to-one then so is $g \circ f$.

soln: [5 marks] Suppose for $a_1, a_2 \in A$ we have $g \circ f(a_1) = g \circ f(a_2)$. That is $g(f(a_1)) = g(f(a_2))$. Since g is one-to-one we have

$$g(f(a_1)) = g(f(a_2))$$
 implies $f(a_1) = f(a_2)$,

so $f(a_1) = f(a_2)$. But f is one-to-one and so

 $f(a_1) = f(a_2)$ implies $a_1 = a_2$.

Thus $a_1 = a_2$. \Box

5. Suppose that X is a poset with a partial ordering \leq and A a subset of X. Define L_A by,

 $L_A := \{x \in X : x \text{ is a lower bound for A}\}.$

Suppose that L_A has a least upper bound b. Show that b is a greatest (or largest) lower bound for A.

soln: [8 marks]

First we will show that b is a lower bound for A. With a view to contradiction suppose not. That is suppose that there is $a \in A$ such that a < b. Since $a \in A$ it is clear that for all $x \in L_A$ we have $x \leq a$ (as $x \in L_A$ means x is a lower bound for A). Thus a is an upper bound for L_A which is less than b. This contradicts that b is a least upper bound as assumed. Thus we conclude there are no elements $a \in A$ such that a < b. That is for all $a \in A$, $b \leq a$, in other words

b is a lower bound for A *

On the other hand we know that b is an upper bound for L_A so if c is any lower bound for A, we have $c \ge b$. This with * means that b is a glb for A. \Box

Total marks: 30