MATHS 255

2002 Semester 1 Exam solutions

1. (18 marks)

- (a) Prove that if x is an odd integer then x^2 is an odd integer. **soln:** x odd means x = 2m + 1 for some $m \in \mathbb{Z}$. So $x^2 = 2m(2m + 1) + 2m + 1 = 2(m(2m + 1) + m) + 1$. Since m(2m + 1) + m is an integer this shows x^2 is odd.
- (b) Consider the statement:

if x is an even integer then x^2 is an even integer.

Write down the statement converse to this statement and then prove this converse statement is true.

soln: Converse is:

if x^2 is an even integer then x is an even integer.

Proof: (Setting the universe of discourse to be the integers) this statement is equivalent to the contrapositive statement:

x is a non-even integer then x^2 is an non-even integer.

That is we should show that if x is an odd integer then x^2 is an odd integer. This was done above.

(c) If A, B are sets then prove that

$$B \setminus (B \setminus A) = A \cap B.$$

soln: We prove $a \in B \setminus (B \setminus A) \Leftrightarrow a \in A \cap B$.

⇒: Suppose $a \in B \setminus (B \setminus A)$. Then $a \in B$ and $a \notin B \setminus A$ Now $B \setminus A = \{b \in B : b \notin A\}$. So it must be that $a \in A$. Since a is in both B and A we have $a \in A \cap B$.

 \Leftarrow Suppose that $a \in A \cap B$ then $a \in A$ and $a \in B$ and so $a \notin B \setminus A$. So we have $a \in B$ and $a \notin B \setminus A$. This means $a \in B \setminus (B \setminus A)$.

2. (18 marks) Let A be a non-empty set and let B be a fixed subset of A. Define a relation \sim on $\mathcal{P}(A)$ by

For $C, D \in \mathcal{P}(A)$ $C \sim D$ if and only if $C \cap B = D \cap B$.

- (a) Show that ~ is an equivalence relation on P(A).
 soln: Reflexive since: for all C ∈ P(A), C ∩ B = C ∩ B (set equality is reflexive!) so C ~ C. Symmetric since: for all C, D ∈ P(A), C ∩ B = D ∩ B ⇐ D ∩ B = C ∩ B (set equality is symmetric) so C ~ D ⇐ D ~ C. Transitive since: for all C, D, E ∈ P(A), since C ~ D and D ~ E means C ∩ B = D ∩ B = E ∩ B and so C ∩ B = E ∩ B (set equality is transitive), that is C ~ E.
- (b) For the particular case where A = {1, 2, 3, 4, 5}, and B = {1, 2, 5}, find the equivalence class of C = {2, 4, 5}, under ∼.
 soln: [C] = {{2, 4, 5}, {2, 5}, {2, 3, 5}, {2, 3, 4, 5}}.
- 3. (16 marks) Give a carefully presented proof by induction that for all n ∈ N, 3 divides 2²ⁿ − 1.
 soln: For n ∈ N let P(n) be the statement that 3 divides 2²ⁿ − 1.

P(1) is true: $2^2 - 1 = 4 - 1 = 3 = 3 \cdot 1$.

Suppose P(k) is true. Then $2^{2k} - 1 = 3\ell$ for some $\ell \in \mathbb{Z}$. Consider $2^{2(k+1)} - 1$. $2^{2(k+1)} - 1 = 2^{2k+2} - 1 = 2^2 \cdot 2^{2k} - 1 = 4 \cdot 2^{2k} - 1 = 4(2^{2k} - 2) + 4 - 1 = 4 \cdot 3\ell + 3 = 3 \cdot (4\ell + 1)$. Since $4\ell + 1 \in \mathbb{Z}$ this shows that $3 \mid 2^{2(k+1)} - 1$. That is P(k) imples P(k+1).

Thus by the priciple of induction we can conclude that $\forall \in \mathbb{N} P(n)$ is true.

- **4.** (20 marks)
 - (a) Show the equation 7 = 6 ⋅12 x has no solutions in Z12.
 soln: If there is a solution x ∈ Z12 to 7 = 6 ⋅12 x then there are integers x, k such that 7 = 6x + 12k. This is clearly impossible since since if x, k ∈ Z then 6 | (6x + 12k) but 6 does not divide (the prime number) 7.
 - (b) Let $a, b, n \in \mathbb{N}$. Suppose there exists an integer c such that $ac \equiv 1 \pmod{n}$. Show that the equation $\overline{a} \cdot_n \overline{x} = \overline{b}$ has a unique solution $\overline{x} \in \mathbb{Z}_n$. **soln:** If $ac \equiv 1 \pmod{n}$ then $\overline{a} \cdot_n \overline{c} = \overline{c} \cdot_n \overline{a} = \overline{1}$. Given this $\overline{x} = \overline{c} \cdot_n \overline{b}$ is a solution since $\overline{a} \cdot_n (\overline{c} \cdot_n \overline{b}) = (\overline{a} \cdot_n \overline{c}) \cdot_n \overline{b} = \overline{1} \cdot_n \overline{b} = \overline{1} \cdot \overline{b} = \overline{b}$. On the other hand if $\overline{x} \in \mathbb{Z}_n$ is a solution to $\overline{a} \cdot_n \overline{x} = \overline{b}$, then $\overline{c} \cdot_n (\overline{a} \cdot_n \overline{x}) = \overline{c} \cdot_n \overline{b}$ $\Leftrightarrow (\overline{c} \cdot_n \overline{a}) \cdot_n \overline{x} = \overline{c} \cdot_n \overline{b}$ $\Leftrightarrow \overline{1} \cdot_n \overline{x} = \overline{c} \cdot_n \overline{b}$ $\Leftrightarrow \overline{x} = \overline{1} \cdot \overline{x} = \overline{c} \cdot_n \overline{b}$. So the solution is unique.

5. (8 marks) Let G, H and J be groups, and let $f: G \to H$ and $g: H \to J$ be homomorphisms. Show that $g \circ f$ is a homomorphism.

soln: Let x and y in G be given. then

$$g \circ f(xy) = g(f(xy)) \quad (\text{def of composite})$$

= $g(f(x)f(y)) \quad (\text{f a hom})$
= $g(f(x))g(f(y)) \quad (\text{g a hom})$
= $g \circ f(x)g \circ f(y), \quad (\text{def of composite})$

proving $g \circ f$ is a homomorphism.

6. (10 marks) Let G be a group, and let H and K be subgroups. Show that their intersection, $H \cap K$, is a subgroup.

soln: Since it contains the identity, e say, it is nonempty. Suppose $x \in H \cap K$ and $y \in H \cap K$ are given. Then $x^{-1}y \in H$ and $x^{-1}y \in K$ since H and K are subgroups. Then $x^{-1}y \in H \cap K$, and therefore $H \cap K$ is a subgroup.

7. (14 marks) Let G be a group with identity e_G . Let H be a group with identity e_H . Let $f : G \to H$ be a homomorphism. Prove that if $\{x \in G : f(x) = e_H\} = \{e_G\}$, then f is one to one, adding words to this calculation.

$$f(x) = f(y)$$
. $f(x^{-1}y) = f(x^{-1})f(y) = f(x)^{-1}f(y) = f(y)^{-1}f(y) = e_H$. $x^{-1}y = e_G$. $x = y$

Prove the converse.

soln: Suppose $x \in G$ and $y \in G$ are given, and f(x) = f(y). Then

$$f(x^{-1}y) = f(x^{-1})f(y) \text{ f a hom}$$

= $f(x)^{-1}f(y)$ a theorem on homs
= $f(y)^{-1}f(y)$
= e_H .

Hence $x^{-1}y = e_G$. Hence x = y. Thus f is one to one.

Conversely, we suppose f is one to one. We want to show $\{x \in G : f(x) = e_H\} = \{e_G\}$. Let $x \in G$ be given, satisfying $f(x) = e_H$. Now $f(e_G) = e_H$. Since f is 1-1, $x = e_G$. Thus $\{x \in G : f(x) = e_H\} = \{e_G\}$.

8. (12 marks) Let A be a nonempty set and let $a \in A$ be given. Let S_A be the group of bijections $f: A \to A$, under composition. Show that $H = \{f \in S_A : f(a) = a\}$ is a subgroup of S_A .

soln: *H* is nonempty since $e \in H$, *e* being the identity. Let $f \in H$ and $g \in H$ be given. Claim $fg^{-1} \in H$. Since g(a) = a, we have $g^{-1}(a) = a$, and hence $fg^{-1}(a) = a$. Hence the claim is true. Hence *H* is a subgroup of S_A .

9. (12 marks) Prove (0, 1) has no least element.

soln: Suppose x is the least element. Then $1 > x \in (0, 1)$ and 2) for all $y \in (0, 1)$, $y \ge x$. Now by 1), x/2 > 0. Also, x/2 < x < 1, giving $x/2 \in (0, 1)$. By 2), x/2 > x. This contradicts x/2 < x. Hence there is no least element x.

10. (12 marks) Let A and B be subsets of \mathbb{R} . Suppose A is nonempty, $A \subset B$, and B is bounded above. Show that the least upper bounds of A and B exist, and satisfy $lub A \leq lub B$.

soln: Since $A \subset B$ and B is bounded above, so is A. Since A is nonempty, l.u.b.A exists. Since A is nonempty and $A \subset B$, B is nonempty. Since it is bounded above, l.u.b.B exists. Let M = l.u.b.B. For all $a \in A$, $a \in B$, and hence $a \leq M$. Thus M is an upper bound for A, which implies $M \geq l.u.b.A$. Thus lub $A \leq lub B$.

11. (12 marks) Suppose $g : \mathbb{R} \to \mathbb{R}$ satisfies $\lim_{x\to\infty} g(x) = \infty$. Show from first principles that $\lim_{x\to\infty} -0.5g(x) = -\infty$.

soln: Let $M \in \mathbb{R}$ be given. We claim there exists N in \mathbb{R} , such that for all x > N, -0.5g(x) < M. Equivalently, g(x) > -2M. But $g(x) \to \infty$ as $x \to \infty$, hence there exists $N \in \mathbb{R}$, such that for all x > N, g(x) > -2M. Thus $\lim_{x\to\infty} -0.5g(x) = -\infty$.

12. (18 marks) Let f and g be functions from \mathbb{R} to \mathbb{R} . Let a and M be real numbers. Suppose $\lim_{x\to a} f(x) = 0$, and there exists $\delta_1 > 0$ such that for all $x \in (a - \delta_1, a + \delta_1)$, $|g(x)| \leq M$. Show from first principles that $\lim_{x\to a} f(x)g(x) = 0$.

soln: We want to show that for all $\epsilon > 0$, there exists $\delta > 0$, such that if $x \in (a - \delta, a + \delta)$, then $|f(x)g(x)| \le \epsilon$. Let $\epsilon > 0$ be given. Since $\lim_{x \to a} f(x) = 0$, take $\delta_2 > 0$ such that if $x \in (a - \delta_2, a + \delta_2)$, then $|f(x)| \le \epsilon/M$. Let $\delta = \min(\delta_1, \delta_2) > 0$. Let $x \in (a - \delta, a + \delta)$ be given. Then

$$|f(x)g(x)| \leq (\epsilon/M)M$$

= ϵ .

13. (10 marks) Suppose $\{a_n\}$ is a sequence of real numbers converging to 0 as $n \to \infty$. Suppose x is a real number, and for all $n, x \leq a_n$. Show $x \leq 0$.

soln: Suppose not, then x > 0. Since $a_n \to 0$, there exists $k \in \mathbb{N}$ such that for all n > k, $a_n \in (-x, x)$. Take n > k. Then $a_n < x$, but $a_n \ge x$ by hypothesis, a contradiction. Hence $x \le 0$.