
Department of Mathematics

MATHS 255 2002 Semester 1 Exam solutions

1. (18 marks)

(a) Prove that if x is an odd integer then x2 is an odd integer.
soln: x odd means x = 2m + 1 for some m ∈ Z.
So x2 = 2m(2m + 1) + 2m + 1 = 2(m(2m + 1) + m) + 1.
Since m(2m + 1) + m is an integer
this shows x2 is odd.

(b) Consider the statement:

if x is an even integer then x2 is an even integer.

Write down the statement converse to this statement and then prove this converse statement
is true.
soln: Converse is:

if x2 is an even integer then x is an even integer.

Proof: (Setting the universe of discourse to be the integers) this statement is equivalent to the
contrapositive statement:

x is a non-even integer then x2 is an non-even integer.

That is we should show that if x is an odd integer then x2 is an odd integer. This was done
above.

(c) If A,B are sets then prove that
B \ (B \A) = A ∩B.

soln: We prove a ∈ B \ (B \A) ⇔ a ∈ A ∩B.
⇒: Suppose a ∈ B \ (B \A). Then a ∈ B and a /∈ B \A
Now B \A = {b ∈ B : b /∈ A}. So it must be that a ∈ A. Since a is in both B and A we have
a ∈ A ∩B.
⇐ Suppose that a ∈ A ∩ B then a ∈ A and a ∈ B and so a /∈ B \ A. So we have a ∈ B and
a /∈ B \A. This means a ∈ B \ (B \A).
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2. (18 marks) Let A be a non-empty set and let B be a fixed subset of A. Define a relation ∼ on P(A)
by

For C,D ∈ P(A) C ∼ D if and only if C ∩B = D ∩B.

(a) Show that ∼ is an equivalence relation on P(A).
soln:
Reflexive since: for all C ∈ P(A), C ∩B = C ∩B (set equality is reflexive!) so C ∼ C.
Symmetric since: for all C,D ∈ P(A), C ∩ B = D ∩ B ⇐ D ∩ B = C ∩ B (set equality is
symmetric) so C ∼ D ⇐ D ∼ C.
Transitive since: for all C,D,E ∈ P(A), since C ∼ D and D ∼ E means C∩B = D∩B = E∩B
and so C ∩B = E ∩B (set equality is transitive), that is C ∼ E.

(b) For the particular case where A = {1, 2, 3, 4, 5}, and B = {1, 2, 5}, find the equivalence class of
C = {2, 4, 5}, under ∼.
soln: [C] = {{2, 4, 5}, {2, 5}, {2, 3, 5}, {2, 3, 4, 5}}.

3. (16 marks) Give a carefully presented proof by induction that for all n ∈ N, 3 divides 22n − 1.

soln: For n ∈ N let P (n) be the statement that 3 divides 22n − 1.

P (1) is true: 22 − 1 = 4− 1 = 3 = 3 · 1.

Suppose P (k) is true. Then 22k − 1 = 3` for some ` ∈ Z. Consider 22(k+1) − 1.
22(k+1) − 1 = 22k+2 − 1 = 22 · 22k − 1 = 4 · 22k − 1 = 4(22k − 2) + 4 − 1 = 4 · 3` + 3 = 3 · (4` + 1).
Since 4` + 1 ∈ Z this shows that 3 | 22(k+1) − 1. That is P (k) imples P (k + 1).

Thus by the priciple of induction we can conclude that ∀ ∈ N P (n) is true.

4. (20 marks)

(a) Show the equation 7 = 6 ·12 x has no solutions in Z12.
soln: If there is a solution x ∈ Z12 to 7 = 6 ·12 x then there are integers x, k such that
7 = 6x + 12k. This is clearly impossible since since if x, k ∈ Z then 6 | (6x + 12k) but 6 does
not divide (the prime number) 7.

(b) Let a, b, n ∈ N. Suppose there exists an integer c such that ac ≡ 1 (mod n). Show that the
equation a ·n x = b has a unique solution x ∈ Zn.
soln: If ac ≡ 1 (mod n) then a ·n c = c ·n a = 1. Given this x = c ·n b is a solution since
a ·n (c ·n b) = (a ·n c) ·n b = 1 ·n b = 1 · b = b. On the other hand if x ∈ Zn is a solution to
a ·n x = b, then
c ·n (a ·n x) = c ·n b
⇔ (c ·n a) ·n x = c ·n b
⇔ 1 ·n x = c ·n b
⇔ x = 1 · x = c ·n b. So the solution is unique.
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5. (8 marks) Let G, H and J be groups, and let f : G → H and g : H → J be homomorphisms. Show
that g ◦ f is a homomorphism.

soln: Let x and y in G be given. then

g ◦ f(xy) = g(f(xy)) (def of composite)
= g(f(x)f(y)) (f a hom)
= g(f(x))g(f(y)) (g a hom)
= g ◦ f(x)g ◦ f(y), (def of composite)

proving g ◦ f is a homomorphism.

6. (10 marks) Let G be a group, and let H and K be subgroups. Show that their intersection, H ∩K,
is a subgroup.

soln: Since it contains the identity, e say, it is nonempty. Suppose x ∈ H ∩K and y ∈ H ∩K are
given. Then x−1y ∈ H and x−1y ∈ K since H and K are subgroups. Then x−1y ∈ H ∩ K, and
therefore H ∩K is a subgroup.

7. (14 marks) Let G be a group with identity eG. Let H be a group with identity eH . Let f : G → H
be a homomorphism. Prove that if {x ∈ G : f(x) = eH} = {eG}, then f is one to one, adding words
to this calculation.

f(x) = f(y). f(x−1y) = f(x−1)f(y) = f(x)−1f(y) = f(y)−1f(y) = eH . x−1y = eG. x = y

Prove the converse.

soln: Suppose x ∈ G and y ∈ G are given, and f(x) = f(y). Then

f(x−1y) = f(x−1)f(y) f a hom
= f(x)−1f(y) a theorem on homs
= f(y)−1f(y)
= eH .

Hence x−1y = eG. Hence x = y. Thus f is one to one.

Conversely, we suppose f is one to one. We want to show {x ∈ G : f(x) = eH} = {eG}. Let x ∈ G
be given, satisfying f(x) = eH . Now f(eG) = eH . Since f is 1-1, x = eG. Thus {x ∈ G : f(x) =
eH} = {eG}.

8. (12 marks) Let A be a nonempty set and let a ∈ A be given. Let SA be the group of bijections
f : A → A, under composition. Show that H = {f ∈ SA : f(a) = a} is a subgroup of SA.

soln: H is nonempty since e ∈ H, e being the identity. Let f ∈ H and g ∈ H be given. Claim
fg−1 ∈ H. Since g(a) = a, we have g−1(a) = a, and hence fg−1(a) = a. Hence the claim is true.
Hence H is a subgroup of SA.

9. (12 marks) Prove (0, 1) has no least element.

soln: Suppose x is the least element. Then 1)x ∈ (0, 1) and 2) for all y ∈ (0, 1), y ≥ x. Now by 1),
x/2 > 0. Also, x/2 < x < 1, giving x/2 ∈ (0, 1). By 2), x/2 > x. This contradicts x/2 < x. Hence
there is no least element x.

MATHS 255 2002 Semester 1 Exam solutions Page 3 of 4



10. (12 marks) Let A and B be subsets of R. Suppose A is nonempty, A ⊂ B, and B is bounded above.
Show that the least upper bounds of A and B exist, and satisfy lubA ≤ lub B.

soln: Since A ⊂ B and B is bounded above, so is A. Since A is nonempty, l.u.b.A exists. Since A is
nonempty and A ⊂ B, B is nonempty. Since it is bounded above, l.u.b.B exists. Let M = l.u.b.B.
For all a ∈ A, a ∈ B, and hence a ≤ M . Thus M is an upper bound for A, which implies
M ≥ l.u.b.A. Thus lubA ≤ lub B.

11. (12 marks) Suppose g : R → R satisfies limx→∞ g(x) = ∞. Show from first principles that
limx→∞−0.5g(x) = −∞.

soln: Let M ∈ R be given. We claim there exists N in R, such that for all x > N , −0.5g(x) < M .
Equivalently, g(x) > −2M . But g(x) → ∞ as x → ∞, hence there exists N ∈ R, such that for all
x > N , g(x) > −2M . Thus limx→∞−0.5g(x) = −∞.

12. (18 marks) Let f and g be functions from R to R. Let a and M be real numbers. Suppose
limx→a f(x) = 0, and there exists δ1 > 0 such that for all x ∈ (a − δ1, a + δ1), |g(x)| ≤ M . Show
from first principles that limx→a f(x)g(x) = 0.

soln: We want to show that for all ε > 0, there exists δ > 0, such that if x ∈ (a − δ, a + δ), then
|f(x)g(x)| ≤ ε. Let ε > 0 be given. Since limx→a f(x) = 0, take δ2 > 0 such that if x ∈ (a−δ2, a+δ2),
then |f(x)| ≤ ε/M . Let δ = min(δ1, δ2) > 0. Let x ∈ (a− δ, a + δ) be given. Then

|f(x)g(x)| ≤ (ε/M)M
= ε.

13. (10 marks) Suppose {an} is a sequence of real numbers converging to 0 as n →∞. Suppose x is a
real number, and for all n, x ≤ an. Show x ≤ 0.

soln: Suppose not, then x > 0. Since an → 0, there exists k ∈ N such that for all n > k,
an ∈ (−x, x). Take n > k. Then an < x, but an ≥ x by hypothesis, a contradiction. Hence x ≤ 0.
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