MATHS255FC	Assignment 8	Due: 4pm, Wednesday 22 May 2002

NB: You are to work individually on assignments. You may do all your other work together. If we believe you have **worked together**, let alone COPIED someone else's script or let someone else COPY YOUR SCRIPT, then you will get NO MARKS.

1. Let G be a group and let H be a subgroup of G. The partition Ω of Lemma 1.86 gives, (and is given by) an equivalence relation, \sim , say.

(a) (6 marks) Show that for all x and y in G, $x \sim y \Leftrightarrow x^{-1}y \in H$.

(b) (3 marks) Let $n \in \mathbb{N}$ be given. We know the relation \sim of congruence modulo n, which gives the partition \mathbb{Z}_n of \mathbb{Z} . See class notes on Natural Numbers, etc, page 24. Find the subgroup H of $(\mathbb{Z}, +)$ which gives congruence modulo n as an example of the equivalence relation in (a).

- **2.** In S_3 , using the notation of Ex 1.20,
 - (a) (6 marks) show which of these subsets are subgroups. $H_1 = \{e\}, H_2 = \{e, \alpha\}, H_3 = \{e, \beta\}, H_4 = \{e, \gamma\}, H_5 = \{e, \phi\}, H_6 = \{e, \psi\}, H_7 = \{e, \phi, \psi\}, H_8 = \{e, \alpha, \beta\}, H_9 = \{e, \alpha, \beta, \phi\}.$
 - (b) (4 marks) For the subgroups H_2 and H_7 , list their left cosets.