$\frac{1}{2}$

Definition 1. A polynomial in x over \mathbb{R} (or, more briefly, a polynomial) is an expression of the form $\frac{1}{2}$

$$
a(x) = a_0 + a_1x + \dots + a_nx^n
$$

where a0, a1, . . . , an ∈ R. We may change the order of the terms, and omit the terms where ai = 0. The numbers and σ , σ ₁, σ ₁,

The set of all such polynomials is denoted by \mathbb{F}_{p} .

Definition 2. The degree of a non-zero polynomial $a_0 + a_1x + \cdots + a_nx^n$ is the greatest i such that the degree of $a(x)$ by $\frac{d}{d}$ 6. We say that the degree of the zero polynomial is −∞. We denote the degree of a(x) by $\deg a(x)$.

 \mathbb{C}^{m} (\mathbb{C}^{m}) (\mathbb{C}^{m}) (polynomials with rational coefficients) and so on \mathcal{C} coefficients), $\mathcal{C}[x]$ (polynomials with rational coefficients) and so one.

We often think of a polynomial over $\mathbb R$ as being a function from $\mathbb R$ to $\mathbb R$. However, we must be careful when considering polynomials over $\mathbb Z_n$: there are infinitely many polynomials, but only finitely many functions from \mathbb{Z}_n to \mathbb{Z}_n , so sometimes different polynomials give the same function. For example, functions from Z_n to Z_n , so sometimes different polynomials g^{n} are same function. For example, we have $a^-\overline{-}a=0$ for all $a\in\mathbb{Z}_n$, but the polynomials $x^-\overline{-}x$ and 0 are not equal.

\mathbf{P}

We define operations of addition and multiplication on $\mathbb{F}_{\mathbb{F}}$ as follows. First, we consider addition. To add together two polynomials, we just collect together the terms with the same degree. In other \cdots and \cdots

(a0 + a1x + . . .) + (b0 + b1x + . . .) = (a0 + b0) + (a1 + b1)x +

 P receives a suppose a(x) and b(x) are polynomials of degree is and m respectively. What is the d_{α} and d_{α} and d_{α}

\mathbb{R} multiplication of polynomials

What happens when we multiply together the polynomials $a_0 + a_1x$ and $b_0 + b_1x + b_2x^2$? If we multiply out the brackets and collect terms together we get

$$
(a_0 + a_1x)(b_0 + b_1x + b_2x^2) = a_0b_0 + a_0b_1x + a_0b_2x^2 + a_1b_0x + a_1b_1x^2 + a_1b_2x^3
$$

= $a_0b_0 + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_1b_1)x^2 + a_1b_2x^3$

 \mathbf{G}^{max} , we have have have \mathbf{G}^{max}

$$
(a_0 + a_1x + \dots + a_nx^n)(b_0 + b_1x + \dots + b_mx^m) = c_0 + c_1x + \dots + c_{n+m}x^{n+m},
$$

where for $0 \le k \le n+m$, $c_k = \sum_{i=0}^k a_i b_{k-i}$. [We take $a_i = b_j = 0$ for any $i > n$ or $j > m$.]

 P receives a suppose a(x) and ϵ (x) are polynomials of degree is and m respectively. What is the $\mathcal{J}(\mathcal{A})$

Multiplication in $\mathbb{R}[x]$ is rather like multiplication in \mathbb{Z} . As in \mathbb{Z} , we define a notion of "divisibility":
we write $a(x) | b(x)$ if there is some $c(x)$ such that $b(x) = a(x)c(x)$. Like \mathbb{Z} , and unlike \mathbb relation in **not** antisymmetric. In Z we have that if $a \mid b$ and $b \mid a$ then $a = \pm b$. In $\mathbb{R}[x]$, we have relation in the antisymmetric. In Ξ we have that if a $\vert x \vert$ a then $x \vert$ Ξ . In Ξ _(x), we have that if $a(x) \vert b(x)$ and $b(x) \vert a(x)$ then $a(x) = cb(x)$ for some $c \neq 0$ that if a $\left(\frac{1}{2}x\right) + \left(\frac{1}{2}x\right)$ and $\left(\frac{1}{2}x\right) + \left(\frac{1}{2}x\right) + \left(\frac{1}{2}x\right)$ for some comparison

The Division Algorithm in $\mathbb{R}[x]$

The structure $\mathbb{R}[x]$ is, in many ways, like Z. Particularly interesting is that we have a result similar to the Division Algorithm in Z. Roughly speaking, it says that we can divide a polynomial $a(x)$ by a n0n-zero polynomial $b(x)$, and get a "smaller remainder". In the Division Algorithm in Z, we write $a = bq + r$, where $0 \le r < b$. In $\mathbb{R}[x]$, the sensible interpretation for "smaller remainder" is that the degree of $r(x)$ is less than the degree of $h(x)$ $\frac{1}{\sqrt{2}}$ that the degree of $\frac{1}{\sqrt{2}}$.

There is $\sum_{i=1}^{n} \sum_{i=1}^{n} \$ there exist unique polynomials $q(x)$ and $r(x)$ with $\log r(x)$ $\log r(x)$ such that

$$
a(x) = q(x)b(x) + r(x).
$$

The proof is much the same as it was for $\mathbb Z$ but using induction on the degree of $b(x)$.

Example 6. Find polynomials $q(x)$ and $r(x)$ with deg $r(x) < 2$ such that

$$
x^{4} + 5x^{3} - 3x^{2} + x + 2 = q(x)(x^{2} + 3x + 5) + r(x)
$$

Solution. We use "long division", just as we used to do division of integers before we had calculators:

$$
\begin{array}{r}\n x^2 + 3x + 5 \overline{\smash{\big)}\ x^4 + 5x^3 - 3x^2 + x + 2} \\
\underline{x^4 + 3x^3 + 5x^2} \\
\underline{2x^3 - 8x^2} + x \\
\underline{2x^3 + 6x^2 + 10x} \\
-14x^2 - 9x + 2 \\
\underline{-14x^2 - 42x - 70} \\
33x + 72\n \end{array}
$$

From this we see that $x^4 + 5x^3 - 3x^2 + x + 2 = (x^2 + 2x - 14)(x^2 + 3x + 5) + (33x + 72)$. \Box

The Euclidean Algorithm in $\mathbb{R}[x]$

In $\mathbb Z$ we use the Euclidean Algorithm to find greatest common divisors. What makes this possible is the Division Algorithm. \mathbf{e}

 S^{1111} we also have the Division \log -recent \log -recent in \log . The can use a similar process to find greatest common divisors in R[x].

Example 7. Find the greatest common divisor of $a(x) = 2x^3 + x^2 - 2x - 1$ and $b(x) = x^3 - x^2 + 2x - 2$.

Solution. We use the Euclidean Algorithm: first divide $a(x)$ by $b(x)$, then divide $b(x)$ by the remainder, then divide the first remainder by the new remainder, and so on. The last non-zero remainder is the greatest common divisor. is the greatest common divisor.

We have

$$
2x3 + x2 - 2x - 1 = 2(x3 - x2 + 2x - 2) + (3x2 - 6x + 3)
$$

$$
x3 - x2 + 2x - 2 = (\frac{1}{3}x + \frac{1}{3})(3x2 - 6x + 3) + (3x - 3)
$$

$$
3x2 - 6x + 3 = (x - 1)(3x - 3)
$$

So the last non-zero remainder is $d(x) = 3x - 3$.

Theorem 8 (The Factor Theorem). Let $p(x) \in \mathbb{R}[x]$, and let $a \in \mathbb{R}$. Then $(x - a) | p(x)$ if and only if $p(a) = 0$. \overline{y} if \overline{y}

Proof. Suppose first that $(x - a) | p(x)$. Then there is some $q(x)$ such that $p(x) = q(x)(x - a)$. But then $p(a) = q(a)(a - a) = 0$.

Conversely, suppose that $p(a) = 0$. By the Division Algorithm in $\mathbb{R}[x]$, we can find polynomials $q(x)$ and $r(x)$ with deg $r(x) < 1$ such that $p(x) = q(x)(x - a) + r(x)$. Now, since deg $r(x) < 1$, $r(x)$ is a constant. Also, we have $p(a) = q(a)(a - a) + r(a)$, in other words $0 = q(a) \cdot 0 + r(a)$, so $r(a) = 0$. constant. The equal p(a) $\frac{1}{2}$ (a) $\frac{1}{2}$ (a) $\frac{1}{2}$ (a), $\frac{1}{2}$ $\frac{$ $H(x) = 0$, so we have p(x) $H(x)$ (x − a), so (x − a) | p(x).

Irreducible polynomials in $\mathbb{R}[x]$

Definition 9. A non-constant polynomial $p(x) \in \mathbb{R}[x]$ is reducible in $\mathbb{R}[x]$ if it can be factorised as $p(x) = a(x)b(x)$, where $a(x), b(x) \in \mathbb{R}[x]$ with $\deg a(x) < \deg p(x)$ and $\deg b(x) < \deg p(x)$. It is α p(x) = a(x)b(x), where $\alpha(x)$, $\alpha(x) = -\alpha$] with deg $\alpha(x)$ α and α g $\alpha(x)$ α and α g p(x). It is $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$

Where we say that a projection is irreducible, we must specify over what field of coefficients. For example, the polynomial $x+1$ is irreducible in $\mathbb{R}[x]$, but it can be factorised as $(x - i)(x + i)$ in C[x].

Problem 10. Show that every linear polynomial $ax + b$ (with $a \neq 0$) is irreducible.

The irreducible polynomials in $\mathbb{R}[x]$ play the same role in $\mathbb{R}[x]$ that the primes play in \mathbb{Z} : every polynomial of degree greater than 0 can be written as a product of (one or more) irreducible polynomials. Moreover, as with uniqueness of prime factorisations in \mathbb{Z} , the factorisation of a polynomial as a $\frac{1}{\sqrt{1-\frac{1$ product of irreducibles is unique (up to the order of the elements, and multiplication by constants).

 \Box