MATHS 255

Algebra of Real Polynomials

Definition 1. A polynomial in x over \mathbb{R} (or, more briefly, a polynomial) is an expression of the form

$$a(x) = a_0 + a_1 x + \dots + a_n x^n$$

where $a_0, a_1, \ldots, a_n \in \mathbb{R}$. We may change the order of the terms, and omit the terms where $a_i = 0$. The numbers a_0, a_1, \ldots, a_n are called the coefficients.

The set of all such polynomials is denoted by $\mathbb{R}[x]$.

Definition 2. The degree of a non-zero polynomial $a_0 + a_1x + \cdots + a_nx^n$ is the greatest *i* such that $a_i \neq 0$. We say that the degree of the zero polynomial is $-\infty$. We denote the degree of a(x) by $\deg a(x)$.

We can also consider polynomials over other sets of numbers, such as $\mathbb{Z}[x]$ (polynomials with integer coefficients), $\mathbb{Q}[x]$ (polynomials with rational coefficients) and so on.

We often think of a polynomial over \mathbb{R} as being a function from \mathbb{R} to \mathbb{R} . However, we must be careful when considering polynomials over \mathbb{Z}_n : there are infinitely many polynomials, but only finitely many functions from \mathbb{Z}_n to \mathbb{Z}_n , so sometimes different polynomials give the same function. For example, we have $\bar{a}^n - \bar{a} = 0$ for all $\bar{a} \in \mathbb{Z}_n$, but the polynomials $x^n - x$ and 0 are not equal.

Addition of polynomials

We define operations of addition and multiplication on $\mathbb{R}[x]$ as follows. First, we consider addition. To add together two polynomials, we just collect together the terms with the same degree. In other words, we have

$$(a_0 + a_1 x + \dots) + (b_0 + b_1 x + \dots) = (a_0 + b_0) + (a_1 + b_1)x + \dots$$

Problem 3. Suppose a(x) and b(x) are polynomials of degree n and m respectively. What is the degree of a(x) + b(x)?

Multiplication of polynomials

What happens when we multiply together the polynomials $a_0 + a_1x$ and $b_0 + b_1x + b_2x^2$? If we multiply out the brackets and collect terms together we get

$$(a_0 + a_1x)(b_0 + b_1x + b_2x^2) = a_0b_0 + a_0b_1x + a_0b_2x^2 + a_1b_0x + a_1b_1x^2 + a_1b_2x^3$$
$$= a_0b_0 + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_1b_1)x^2 + a_1b_2x^3$$

In general, we have

$$(a_0 + a_1x + \dots + a_nx^n)(b_0 + b_1x + \dots + b_mx^m) = c_0 + c_1x + \dots + c_{n+m}x^{n+m},$$

where for $0 \le k \le n+m$, $c_k = \sum_{i=0}^k a_i b_{k-i}$. [We take $a_i = b_j = 0$ for any i > n or j > m.]

Problem 4. Suppose a(x) and b(x) are polynomials of degree n and m respectively. What is the degree of a(x)b(x)?

Multiplication in $\mathbb{R}[x]$ is rather like multiplication in \mathbb{Z} . As in \mathbb{Z} , we define a notion of "divisibility": we write $a(x) \mid b(x)$ if there is some c(x) such that b(x) = a(x)c(x). Like \mathbb{Z} , and unlike \mathbb{N} , this relation in **not** antisymmetric. In \mathbb{Z} we have that if $a \mid b$ and $b \mid a$ then $a = \pm b$. In $\mathbb{R}[x]$, we have that if $a(x) \mid b(x)$ and $b(x) \mid a(x)$ then a(x) = cb(x) for some $c \neq 0$.

The Division Algorithm in $\mathbb{R}[x]$

The structure $\mathbb{R}[x]$ is, in many ways, like \mathbb{Z} . Particularly interesting is that we have a result similar to the Division Algorithm in \mathbb{Z} . Roughly speaking, it says that we can divide a polynomial a(x) by a non-zero polynomial b(x), and get a "smaller remainder". In the Division Algorithm in \mathbb{Z} , we write a = bq + r, where $0 \le r < b$. In $\mathbb{R}[x]$, the sensible interpretation for "smaller remainder" is that the degree of r(x) is less than the degree of b(x).

Theorem 5 (The Division Algorithm for $\mathbb{R}[x]$). Let $a(x), b(x) \in \mathbb{R}[x]$ with $b(x) \neq 0$. Then there exist unique polynomials q(x) and r(x) with $\deg r(x) < \deg b(x)$ such that

$$a(x) = q(x)b(x) + r(x).$$

The proof is much the same as it was for \mathbb{Z} but using induction on the degree of b(x).

Example 6. Find polynomials q(x) and r(x) with deg r(x) < 2 such that

$$x^{4} + 5x^{3} - 3x^{2} + x + 2 = q(x)(x^{2} + 3x + 5) + r(x)$$

Solution. We use "long division", just as we used to do division of integers before we had calculators:

From this we see that $x^4 + 5x^3 - 3x^2 + x + 2 = (x^2 + 2x - 14)(x^2 + 3x + 5) + (33x + 72).$

The Euclidean Algorithm in $\mathbb{R}[x]$

In \mathbbm{Z} we use the Euclidean Algorithm to find greatest common divisors. What makes this possible is the Division Algorithm.

Since we also have the Division Algorithm in $\mathbb{R}[x]$, we can use a similar process to find greatest common divisors in $\mathbb{R}[x]$.

Example 7. Find the greatest common divisor of $a(x) = 2x^3 + x^2 - 2x - 1$ and $b(x) = x^3 - x^2 + 2x - 2$.

Solution. We use the Euclidean Algorithm: first divide a(x) by b(x), then divide b(x) by the remainder, then divide the first remainder by the new remainder, and so on. The last non-zero remainder is the greatest common divisor.

We have

$$2x^{3} + x^{2} - 2x - 1 = 2(x^{3} - x^{2} + 2x - 2) + (3x^{2} - 6x + 3)$$
$$x^{3} - x^{2} + 2x - 2 = (\frac{1}{3}x + \frac{1}{3})(3x^{2} - 6x + 3) + (3x - 3)$$
$$3x^{2} - 6x + 3 = (x - 1)(3x - 3)$$

So the last non-zero remainder is d(x) = 3x - 3.

Theorem 8 (The Factor Theorem). Let $p(x) \in \mathbb{R}[x]$, and let $a \in \mathbb{R}$. Then $(x - a) \mid p(x)$ if and only if p(a) = 0.

Proof. Suppose first that (x - a) | p(x). Then there is some q(x) such that p(x) = q(x)(x - a). But then p(a) = q(a)(a - a) = 0.

Conversely, suppose that p(a) = 0. By the Division Algorithm in $\mathbb{R}[x]$, we can find polynomials q(x) and r(x) with deg r(x) < 1 such that p(x) = q(x)(x - a) + r(x). Now, since deg r(x) < 1, r(x) is a constant. Also, we have p(a) = q(a)(a - a) + r(a), in other words $0 = q(a) \cdot 0 + r(a)$, so r(a) = 0. Hence r(x) = 0, so we have p(x) = q(x)(x - a), so $(x - a) \mid p(x)$.

Irreducible polynomials in $\mathbb{R}[x]$

Definition 9. A non-constant polynomial $p(x) \in \mathbb{R}[x]$ is reducible in $\mathbb{R}[x]$ if it can be factorised as p(x) = a(x)b(x), where $a(x), b(x) \in \mathbb{R}[x]$ with deg a(x) < deg p(x) and deg b(x) < deg p(x). It is irreducible in \mathbb{R} if it is not reducible in $\mathbb{R}[x]$.

When we say that a polynomial is irreducible, we must specify over what field of coefficients. For example, the polynomial $x^2 + 1$ is irreducible in $\mathbb{R}[x]$, but it can be factorised as (x - i)(x + i) in $\mathbb{C}[x]$.

Problem 10. Show that every linear polynomial ax + b (with $a \neq 0$) is irreducible.

The irreducible polynomials in $\mathbb{R}[x]$ play the same role in $\mathbb{R}[x]$ that the primes play in \mathbb{Z} : every polynomial of degree greater than 0 can be written as a product of (one or more) irreducible polynomials. Moreover, as with uniqueness of prime factorisations in \mathbb{Z} , the factorisation of a polynomial as a product of irreducibles is unique (up to the order of the elements, and multiplication by constants).