MATHS 255: Principles of Mathematics CLASS TEST

3-4 pm THURSDAY 13th September 2001 Solutions

1. Let $A(n)$ be the predicate:

If *n* is not prime, then $\exists p \in \mathbb{N}$ *p* is prime and $p \mid n$.

(a) $[5]$ Write down the negation of $A(n)$,

n is not prime and $\forall p \in \mathbb{N}$, *p* is not prime or *p* does not divide *n*.

(b) [10] Determine with reasons whether or not it is true that $\exists n \in \mathbb{N}$ $A(n)$.

True. Take for example $n = 2$ (any prime would work as well). The hypothesis "*n* is not prime" is not satisfied, so the conditional statement $A(2)$ is true.

(c) [10] Determine with reasons whether or not it is true that $\forall n \in \mathbb{N}$ $A(n)$.

False. Take for example $n = 1$. 1 is not prime and moreover it has no prime divisor. So $A(1)$ is false.

2. A relation \leq is defined on **R**×**R** by $(a,b) \leq (c,d)$ if and only if

either $a < c$ or $(a = c$ and $b \le d$).

 $($ \triangleleft is sometimes called "dictionary ordering," and in fact it is a total ordering of $\mathbf{R} \times \mathbf{R}$.)

(a) [5] Put the following three elements of $\mathbf{R} \times \mathbf{R}$ in order:

$$
(\pi, \sqrt{10}), \left(\frac{22}{7}, \pi\right), \left(\pi, \frac{22}{7}\right) \text{ [Hint: } \pi < \frac{22}{7} < \sqrt{10}\text{].}
$$

Ans:
$$
\left(\pi, \frac{22}{7}\right) \triangleleft (\pi, \sqrt{10}) \triangleleft \left(\frac{22}{7}, \pi\right)\text{.}
$$

(b) [10] Assuming that \leq is a total ordering of $\mathbf{R} \times \mathbf{R}$, sketch the "closed" interval" $\{(a,b) : (1,2) \triangleleft (a,b) \triangleleft (2,1) \}.$

(c) [15] Assuming that \leq is a total ordering on **R**, but without assuming that \triangleleft is a total ordering on $\mathbb{R} \times \mathbb{R}$, prove that \leq is antisymmetric.

Notice first that if $(a,b) \triangleleft (c,d)$, then $a \leq c$. Now suppose $(a,b) \triangleleft (c,d)$ and $(c,d) \triangleleft (a,b)$. Then $a \leq c$ and $c \leq a$, so $a = c$. Since $(a,b) \triangleleft (c,d)$, we now have that $b \le d$, and since $(c,d) \triangleleft (a,b)$, we have that $d \le b$, So $b = d$. Hence $(a, b) = (c, d)$.

3. [20] Find and prove a formula for $\frac{1}{1} + \sum_{i=1}^{n} \frac{1}{i}$ $n \sum_{i=2}^{n} i(i-1)$ *n* $+\sum_{i=2}^{\infty} \frac{1}{i(i-1)}$ valid for all integers $n \geq 2$,

By testing a few values, we expect that $\frac{1}{1} + \sum_{i=1}^n \frac{1}{i}$ 1 1 $n \sum_{i=2}^{\infty} i(i)$ *n* $+\sum_{i=2}^{\infty} \frac{1}{i(i-1)} = 1$ for all $n \ge 2$. We prove it by induction: Let P_n be the statement: $\frac{1}{n} + \sum_{i=2}^{n} \frac{1}{i(i-1)}$ 1 $n \sum_{i=2}^{\infty} i(i)$ *n* $+\sum_{i=2}^{\infty} \frac{1}{i(i-1)} = 1.$

 P_2 is true. Proof: $\frac{1}{2}$ 1 $+\frac{1}{2 \cdot 1} = 1.$

For $k \ge 2$, $P_k \Rightarrow P_{k+1}$ is true. Proof:

$$
P_k \Rightarrow \frac{1}{k} + \sum_{i=2}^{k} \frac{1}{i(i-1)} = 1
$$

\n
$$
\Rightarrow \sum_{i=2}^{k} \frac{1}{i(i-1)} = 1 - \frac{1}{k}
$$

\n
$$
\Rightarrow \frac{1}{k+1} + \sum_{i=2}^{k+1} \frac{1}{i(i-1)} = \frac{1}{k+1} + \left(1 - \frac{1}{k}\right) + \frac{1}{(k+1)k}
$$

\n
$$
\Rightarrow \frac{1}{k+1} + \sum_{i=2}^{k+1} \frac{1}{i(i-1)} = 1
$$

\n
$$
\Rightarrow P_{k+1}.
$$

Hence, by PMI. P_n is true for all $n \ge 2$.

4. [25] Find a greatest common divisor $d(x)$ of the polynomials $a(x) = x^3 + x^2 + x + \overline{1}$, $b(x) = x^4 - x^3 + x + \overline{1}$ in **Z**₂[x], and find *u(x)*, $v(x) \in \mathbb{Z}_2[x]$ such that $d(x) = a(x)u(x) + b(x)v(x)$.

> We use the Euclidean algorithm. Dividing $b(x)$ by $a(x)$, we get quotient $q_1(x) = x$ and remainder $r_1(x) = x^2 + 1$. Dividing $a(x)$ by $r_1(x)$, we get quotient $q_2(x) = x + 1$ and remainder $r_2(x) = \overline{0}.$ Hence, the greatest common divisor (the last non-zero remainder) is $d(x) = r_1(x) = x^2 + \bar{1}$, and since $d(x) = b(x) - a(x)q_1(x)$, we take $u(x) = -q_1(x) = -x = x$ and $v(x) = \overline{1}$, so that $d(x) = a(x)u(x) + b(x)v(x)$.