
MATHS 255: Principles of Mathematics
CLASS TEST

3-4  pm THURSDAY 13th September 2001

Solutions

1. Let  A n( )   be the predicate:

If  n  is not prime, then  ∃ ∈p p p nN  | is prime and .

(a) [5] Write down the negation of  A n( ) ,

n  is not prime and ∀ ∈p p p nN,   is not prime or  does not divide .

(b) [10] Determine with reasons whether or not it is true that  ∃ ∈n A nN  ( ) .

True.  Take for example  n = 2  (any prime would work as well).  The
hypothesis  "n is not prime" is not satisfied, so the conditional statement  A( )2
is true.

(c) [10] Determine with reasons whether or not it is true that  ∀ ∈n A nN  ( ) .

False.  Take for example  n = 1.  1  is not prime and moreover it has no prime
divisor.  So  A( )1   is false.

2. A relation    <   is defined on  R R×   by    ( , ) ( , )a b c d<   if and only if

either  a c a c b d< ≤( ) or =  and .

(  <  is sometimes called "dictionary ordering,"  and in fact it is a total ordering of
R R× .)

(a) [5] Put the following three elements of  R R×   in order:
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(b) [10] Assuming that    <   is a total ordering of  R R× , sketch the "closed
interval"    ( , )  :  ( , ) ( , ) ( , )a b a b1 2 2 1< <{ } .
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(c) [15] Assuming that  ≤  is a total ordering on  R,  but without assuming that    <
is a total ordering on  R R× ,  prove that    <   is antisymmetric.

Notice first that if    ( , ) ( , )a b c d< , then  a c≤ .  Now suppose    ( , ) ( , )a b c d<
and    ( , ) ( , )c d a b< .  Then  a c≤   and  c a≤ ,  so  a c= .  Since    ( , ) ( , )a b c d< ,

we now have that  b d≤ , and  since    ( , ) ( , )c d a b< , we have that  d b≤ ,  So
b d= .  Hence  ( , ) ( , )a b c d= .

3. [20] Find and prove a formula for  
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n ≥ 2 ,

By  testing a few values, we expect that  
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 for all  n ≥ 2 .  We

prove it by induction:  Let  Pn   be the statement:  
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P2   is true.  Proof:   
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For k ≥ 2  ,  P Pk k⇒ +1  is true.  Proof:
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Hence, by PMI.   Pn   is true for all  n ≥ 2 .



4. [25] Find a greatest common divisor  d x( )   of the polynomials

a x x x x b x x x x( ) ,   ( )= + + + = − + +3 2 4 31 1   in  Z2[ ]x ,  and find
u x v x x( ),  ( ) [ ]∈ Z2   such that  d x a x u x b x v x( ) ( ) ( ) ( ) ( )= + .

We use the Euclidean algorithm.  Dividing  b x( )  by  a x( ) ,  we get  quotient

q x x1( ) =  and remainder  r x x1
2 1( ) = + .

Dividing  a x( )   by  r x1( ) ,  we get  quotient  q x x2 1( ) = +  and remainder
r x2 0( ) = .
Hence,  the greatest common divisor (the last non-zero remainder) is
d x r x x( ) ( )= = +1

2 1, and since  d x b x a x q x( ) ( ) ( ) ( )= − 1 ,  we take
u x q x x x( ) ( )= − = − =1   and  v x( ) = 1,  so that  d x a x u x b x v x( ) ( ) ( ) ( ) ( )= + .


