MATHS 255: Principles of Mathematics CLASS TEST

3-4 pm THURSDAY 13th September 2001 Solutions

1. Let A(n) be the predicate:

If *n* is not prime, then $\exists p \in \mathbf{N} \ p$ is prime and $p \mid n$.

(a) [5] Write down the negation of A(n),

n is not prime and $\forall p \in \mathbf{N}$, *p* is not prime or *p* does not divide *n*.

(b) [10] Determine with reasons whether or not it is true that $\exists n \in \mathbf{N} A(n)$.

True. Take for example n = 2 (any prime would work as well). The hypothesis "*n* is not prime" is not satisfied, so the conditional statement A(2) is true.

(c) [10] Determine with reasons whether or not it is true that $\forall n \in \mathbf{N} \ A(n)$.

False. Take for example n = 1. 1 is not prime and moreover it has no prime divisor. So A(1) is false.

2. A relation \triangleleft is defined on $\mathbf{R} \times \mathbf{R}$ by $(a,b) \triangleleft (c,d)$ if and only if

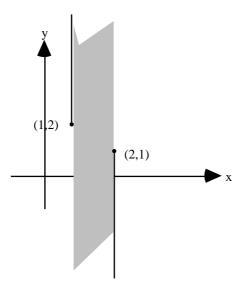
either a < c or $(a = c \text{ and } b \le d)$.

(\triangleleft is sometimes called "dictionary ordering," and in fact it is a total ordering of $\mathbf{R} \times \mathbf{R}$.)

(a) [5] Put the following three elements of $\mathbf{R} \times \mathbf{R}$ in order:

$$\left(\pi, \sqrt{10}\right), \left(\frac{22}{7}, \pi\right), \left(\pi, \frac{22}{7}\right)$$
 [Hint: $\pi < \frac{22}{7} < \sqrt{10}$].
Ans: $\left(\pi, \frac{22}{7}\right) \triangleleft \left(\pi, \sqrt{10}\right) \triangleleft \left(\frac{22}{7}, \pi\right)$.

(b) [10] Assuming that \triangleleft is a total ordering of $\mathbf{R} \times \mathbf{R}$, sketch the "closed interval" $\{(a,b) : (1,2) \triangleleft (a,b) \triangleleft (2,1)\}$.



(c) [15] Assuming that \leq is a total ordering on **R**, but without assuming that \triangleleft is a total ordering on $\mathbf{R} \times \mathbf{R}$, prove that \triangleleft is antisymmetric.

Notice first that if $(a,b) \triangleleft (c,d)$, then $a \leq c$. Now suppose $(a,b) \triangleleft (c,d)$ and $(c,d) \triangleleft (a,b)$. Then $a \leq c$ and $c \leq a$, so a = c. Since $(a,b) \triangleleft (c,d)$, we now have that $b \leq d$, and since $(c,d) \triangleleft (a,b)$, we have that $d \leq b$, So b = d. Hence (a,b) = (c,d).

3. [20] Find and prove a formula for $\frac{1}{n} + \sum_{i=2}^{n} \frac{1}{i(i-1)}$ valid for all integers $n \ge 2$,

By testing a few values, we expect that $\frac{1}{n} + \sum_{i=2}^{n} \frac{1}{i(i-1)} = 1$ for all $n \ge 2$. We prove it by induction: Let P_n be the statement: $\frac{1}{n} + \sum_{i=2}^{n} \frac{1}{i(i-1)} = 1$.

 P_2 is true. Proof: $\frac{1}{2} + \frac{1}{2 \cdot 1} = 1$.

For $k \ge 2$, $P_k \Rightarrow P_{k+1}$ is true. Proof: $1 \quad \frac{k}{k} \quad 1$

$$\begin{split} P_k &\Rightarrow \frac{1}{k} + \sum_{i=2} \frac{1}{i(i-1)} = 1 \\ \Rightarrow &\sum_{i=2}^k \frac{1}{i(i-1)} = 1 - \frac{1}{k} \\ \Rightarrow &\frac{1}{k+1} + \sum_{i=2}^{k+1} \frac{1}{i(i-1)} = \frac{1}{k+1} + \left(1 - \frac{1}{k}\right) + \frac{1}{(k+1)k} \\ \Rightarrow &\frac{1}{k+1} + \sum_{i=2}^{k+1} \frac{1}{i(i-1)} = 1 \\ \Rightarrow &P_{k+1}. \end{split}$$

Hence, by PMI. P_n is true for all $n \ge 2$.

4. [25] Find a greatest common divisor d(x) of the polynomials $a(x) = x^3 + x^2 + x + \overline{1}$, $b(x) = x^4 - x^3 + x + \overline{1}$ in $\mathbb{Z}_2[x]$, and find u(x), $v(x) \in \mathbb{Z}_2[x]$ such that d(x) = a(x)u(x) + b(x)v(x).

We use the Euclidean algorithm. Dividing b(x) by a(x), we get quotient $q_1(x) = x$ and remainder $r_1(x) = x^2 + \overline{1}$. Dividing a(x) by $r_1(x)$, we get quotient $q_2(x) = x + \overline{1}$ and remainder $r_2(x) = \overline{0}$. Hence, the greatest common divisor (the last non-zero remainder) is $d(x) = r_1(x) = x^2 + \overline{1}$, and since $d(x) = b(x) - a(x)q_1(x)$, we take $u(x) = -q_1(x) = -x = x$ and $v(x) = \overline{1}$, so that d(x) = a(x)u(x) + b(x)v(x).