MATHS 255: Principles of Mathematics CLASS TEST

3-4 pm THURSDAY 13th September 2001

NOTE: Attempt all questions. Write your answers in the examination booklet provided. You may refer to books, handouts and lecture notes, and calculators may be used, but communication with other students during the test is **not** permitted.

 Let A(n) be the predicate: If n is not prime, then ∃p ∈ N p is prime and p | n.
 (a) [5] Write down the negation of A(n),

- (b) [10] Determine with reasons whether or not it is true that $\exists n \in \mathbf{N} A(n)$.
- (c) [10] Determine with reasons whether or not it is true that $\forall n \in \mathbf{N} \ A(n)$.

2. A relation \triangleleft is defined on $\mathbf{R} \times \mathbf{R}$ by $(a,b) \triangleleft (c,d)$ if and only if

either
$$a < c$$
 or $(a = c \text{ and } b \leq d)$.

(\triangleleft is sometimes called "dictionary ordering," and in fact it is a total ordering of $\mathbf{R} \times \mathbf{R}$.)

(a) [5] Put the following three elements of $\mathbf{R} \times \mathbf{R}$ in order:

$$(\pi, \sqrt{10}), (\frac{22}{7}, \pi), (\pi, \frac{22}{7})$$
 [Hint: $\pi < \frac{22}{7} < \sqrt{10}$].

(b) [10] Assuming that \triangleleft is a total ordering of $\mathbf{R} \times \mathbf{R}$, sketch the "closed interval" $\{(a,b) : (1,2) \triangleleft (a,b) \triangleleft (2,1)\}$.

(c) [15] Assuming that \leq is a total ordering on **R**, but without assuming that \triangleleft is a total ordering on $\mathbf{R} \times \mathbf{R}$, prove that \triangleleft is antisymmetric.

3. [20] Find and prove a formula for $\frac{1}{n} + \sum_{i=2}^{n} \frac{1}{i(i-1)}$ valid for all integers $n \ge 2$,

4. [25] Find a greatest common divisor d(x) of the polynomials $a(x) = x^3 + x^2 + x + \overline{1}$, $b(x) = x^4 - x^3 + x + \overline{1}$ in $\mathbb{Z}_2[x]$, and find u(x), $v(x) \in \mathbb{Z}_2[x]$ such that d(x) = a(x)u(x) + b(x)v(x).