1. For each design below determine the symmetry group.

Let D_n be the symmetry group of a regular n-gon and R_n be the subgroup of rotations. Then each of the figures above have a symmetry group either D_n or R_n depending on whether or not they are equivalent to their mirror image (e.g. by a rotation). Hence the symmetry groups of the figures are in order: D_5 , D_4 , R_2 , R_4 , D_3 , and D_{16} .

2. If *G* is a group, Show that $(a * b)^2 = a^2 * b^2 \Rightarrow a * b = b * a$.

$$
a * b * a * b = a * a * b * b \Rightarrow a^{-1} * a * b * a * b * b^{-1} = a^{-1} * a * a * b * b * b^{-1}
$$

\n
$$
\Rightarrow e * b * a * e = e * a * b * e \Rightarrow b * a = a * b
$$

3. If *G* is a group for which every element $g \in G$ has $g^2 = e$, Show that *G* is commutative.

Consider any pair of elements $a, b \in G$, then $(a * b)^2 = e \Rightarrow a * b * a * b = e \Rightarrow a * a * b * a * b * b = a * e * b$ \Rightarrow e^{*} b^{*} a^{*} e = a^{*} e^{*} b \Rightarrow b^{*} a = a^{*} b

4. Let *G* be the group of matrices of each of the linear transformations corresponding to the group of symmetries of the square with vertices $(\pm 1, \pm 1)$ under matrix multiplication. Show *G* is isomorphic to D_4 .

Let
$$
I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
$$
, $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$,
\n $D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $E = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, $F = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$, $G = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

This set of matrices generates the following cayley table by matrix multiplication

For example $E^*C = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = F$ $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ ſ $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ ſ $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ $=$ $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ $=$ 0 1 1 0 $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = F$, $F * E = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = A$ ſ $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ − $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} =$ 1 0 0 1 $0 -1$ 1 0 Notice that although the matrices operate on the left as functions they multiply in their usual order .

This is clearly isomorphic to D_4 as the Cayley tables as arranged have identical structures.

5. (a) Show that $\mathbb{Z}_9\backslash \{0\}$ is not a multiplicative group.

Consider the partial Cayley table

The entries in the row determining the results of 3**g* are inconsistent with this being a group for two reasons. Firstly it is not closed since $3*3 = 0$ is not in the set of elements, secondly $3*1 = 3*4 = 3*7$ viiolating the condensation law and its corollary that every element in any row must be distinct.

(b) Let $U(9) = \{ \bar{n} : n \text{ is relatively prime to } 9 \}.$ Show $(U(9), \bullet_{9})$ is a multiplicative group, where \bullet_{9} is multiplication modulo 9.

(c) Show *U(9)* is isomorphic to the additive group *Z6.*

The three Cayley tables above show (i) $U(9)$, (ii) $U(9)$ with rows and columns rearranged, and (iii) Z_6 . $U(9)$ is clearly a group because it inherits associativity from integer addition, has an identity 1 and $5 = 2^{-1}$, $7 = 4^{-1}$, $8 = 8^{-1}$, so every element also has an inverse.

The above inverse pairings also suggest that this group may be isomorphic with Z_6 . Rearranging the Cayley table as in (ii) we can see how to define an isomorphism $f: U(9) \rightarrow Z_6$ as follows:

 $f(1) = 0$, $f(2) = 1$, $f(4) = 2$, $f(8) = 3$, $f(7) = 4$, $f(5) = 5$ ^t