1. For each design below determine the symmetry group.

Let D_n be the symmetry group of a regular n-gon and R_n be the subgroup of rotations. Then each of the figures above have a symmetry group either D_n or R_n depending on whether or not they are equivalent to their mirror image (e.g. by a rotation). Hence the symmetry groups of the figures are in order: D_5 , D_4 , R_2 , R_4 , D_3 , and D_{16} .

2. If G is a group, Show that $(a * b)^2 = a^2 * b^2 \Rightarrow a * b = b * a$.

$$a * b * a * b = a * a * b * b \Longrightarrow a^{-1} * a * b * a * b * b^{-1} = a^{-1} * a * a * b * b^{-1}$$

$$\Rightarrow e * b * a * e = e * a * b * e \Longrightarrow b * a = a * b$$

3. If G is a group for which every element $g \in G$ has $g^2 = e$, Show that G is commutative.

Consider any pair of elements $a, b \in G$, then $(a * b)^2 = e \Rightarrow a * b * a * b = e \Rightarrow a * a * b * a * b * b = a * e * b$ $\Rightarrow e * b * a * e = a * e * b \Rightarrow b * a = a * b$

4. Let *G* be the group of matrices of each of the linear transformations corresponding to the group of symmetries of the square with vertices $(\pm 1, \pm 1)$ under matrix multiplication. Show *G* is isomorphic to D₄.

Let
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$,
 $D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $E = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, $F = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$, $G = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

This set of matrices generates the following cayley table by matrix multiplication

*	1	A	в	С	D	E	F	G	
I	I	A	в	С	D	Е	F	G	
A	A	в	С	1	G	F	D	E	
в	в	С	I	A	E	D	G	F	
С	С	1	A	в	F	G	Е	D	
D	D	F	E	G	1	в	A	С	
E	E	G	D	F	в	1	С	A	
F	F	E	G	D	С	A	1	в	
G	G	D	F	Е	A	С	в	1	

For example $E * C = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = F$, $F * E = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = A$ Notice that although the matrices operate on the left as functions they multiply in their usual order.

This is clearly isomorphic to D_4 as the Cayley tables as arranged have identical structures.

5. (a) Show that $Z_{9} \{0\}$ is not a multiplicative group.

Consider the partial Cayley table

*	1	2	- 3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	4	6	8	1	- 3	5	7
3	- 3	6	0	- 3	6	0	- 3	6
4	4							
5	5							
6	6							
7	7							
8	8							

The entries in the row determining the results of 3^*g are inconsistent with this being a group for two reasons. Firstly it is not closed since $3^*3 = 0$ is not in the set of elements, secondly $3^*1 = 3^*4 = 3^*7$ viiolating the condensation law and its corollary that every element in any row must be distinct.

(b) Let $U(9) = \{ \overline{n}: n \text{ is relatively prime to } 9 \}$. Show $(U(9), \bullet_9)$ is a multiplicative group, where \bullet_9 is multiplication modulo 9.

(c) Show U(9) is isomorphic to the additive group Z_{6} .

*	2	4	5	7	8	×	1	2	4	8	7	5	-	+	0	1	2	3	4	5
1	2	4	5	- 7	8	1	1	2	4	8	7	5		0	0	1	2	- 3	4	5
2	4	8	1	5	7	2	2	4	8	- 7	5	1		1	1	2	- 3	4	5	0
4	8	7	2	1	5	4	4	8	- 7	5	1	2		2	2	- 3	4	5	0	1
5	1	2	7	8	4	8	8	7	5	1	2	4		3	- 3	4	5	0	1	2
7	5	1	8	4	2	7	7	5	1	2	4	8		4	4	5	0	1	2	- 3
8	7	5	4	2	1	5	5	1	2	4	8	7		5	5	0	1	2	- 3	4

The three Cayley tables above show (i) U(9), (ii) U(9) with rows and columns rearranged, and (iii) Z_{6} . U(9) is clearly a group because it inherits associativity from integer addition, has an identity 1 and $5 = 2^{-1}$, $7 = 4^{-1}$, $8 = 8^{-1}$, so every element also has an inverse.

The above inverse pairings also suggest that this group may be isomorphic with Z_{6} . Rearranging the Cayley table as in (ii) we can see how to define an isomorphism $f:U(9) \to Z_6$ as follows:

f(1) = 0, f(2) = 1, f(4) = 2, f(8) = 3, f(7) = 4, f(5) = 5