DEPARTMENT OF MATHEMATICS

1. Suppose that *X* is a poset with partial ordering \le , and suppose that *A* is a non-empty subset of *X*. Show that if *A* has a least upper bound and a greatest lower bound, then $glb(A) \leq lub(A)$.

Let *L*,*l* be least upper and greatest lower bounds respectively for *A*. Since $A \neq \emptyset$, let $a \in A$. Then $l \le a$ since *l* is a lower bound of *A*, and $a \le L$ since *L* is an upper bound of *A*. Hence, $l \leq L$ by transitivity.

2. Let $A = \mathbb{N} \times \mathbb{N}$, and define a relation ~ on *A* by $(a,b) \sim (c,d) \Leftrightarrow b+c = a+d$. Prove that ~ is an equivalence relation on *A*, and describe the equivalence classes.

[Note: This set of equivalence classes, endowed with appropriate definitions of addition and multiplication, is sometimes called the set of *integers*.]

1. Reflexive: Let $(a,b) \in \mathbb{N} \times \mathbb{N}$. Then $a+b=b+a$, so $(a,b) \sim (a,b)$.

2. Symmetric: Let $(a, b), (c, d) \in \mathbb{N} \times \mathbb{N}$, and suppose $(a, b) \sim (c, d)$. Then $b+c = a+d$, so $d+a=c+b$, and hence $(c,d) \sim (a,b)$.

3. Transitive: Let $(a, b), (c, d), (e, f) \in \mathbb{N} \times \mathbb{N}$, and suppose $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$. Then $a+d=b+c$, and $c+f=d+e$. Adding the two equations, we get $a+d+c+f=b+c+d+e$, and hence $a+f=b+e$, so that $(a,b) \sim (e, f)$.

 $T_{(a,b)} = \{(x, y) : x, y \in \mathbb{N} \text{ and } y = x + (b - a)\} = \text{all points of the plane with natural number}$ coordinates and on the line through (a,b) parallel to $y=x$. [Naturally, we identify the class containing (a,b) with the integer $b - a$.]

3. (a) Prove that if functions $f:A \to B$ and $g:B \to C$ are onto, then so is $g \circ f$. Let *c* ∈ *C*. $\exists b \in B$, $g(b) = c$ (since *g* is onto), and $\exists a \in A$, $f(a) = b$ (since *f* is onto), so $g \circ f(a) = c$ as required to show that $g \circ f$ is onto.

(b) Prove that if $f:A \to B$ is a function and the inverse relation f^{-1} from *B* to *A* is a function, then *f* is one-to-one and onto.

 $f^{-1} = \{(b, a) : f(a) = b\}$. Suppose $a_1, a_2 \in A$ and $f(a_1) = f(a_2)$. Then $(f(a_1), a_1) \in f^{-1}$ and $(f(a_1), a_2) \in f$ $\in f^{-1}$ and $(f(a_1), a_2) \in f^{-1}$. Since f^{-1} is single valued, we conclude that $a_1 = a_2$, and hence *f* is one-to-one.

To show *f* is onto, assume $b \in B$. Then since *B* is the domain of f^{-1} , $(b, a) \in f^{-1}$ for some $a \in A$. Hence, $f(a) = b$, as required to show that f is onto.

4. Let $f:A \to B$ be a function, and define a new function $F: \mathcal{P}(B) \to \mathcal{P}(A)$ by

$$
F(C) = \{a \in A : f(a) \in C\}
$$

for each $C \subseteq B$. Prove that *f* is one-to-one if and only if *F* is onto.

Assume that *f* is one-to-one, and suppose $C \in \mathcal{P}(A)$. Let $D = f(C)$. We show $F(D) = C$. $x \in F(D) \Leftrightarrow f(x) \in D \Leftrightarrow f(x) = f(c)$ for some $c \in C \Leftrightarrow x = c$ for some $c \in C$ (since *f* is one-toone) $\Leftrightarrow x \in C$. Hence $F(D) = C$, and *F* is onto.

Conversely, assume *F* is onto and $a \in A$. Then $\{a\} \in \mathcal{P}(A)$, so $\{a\} = F(C)$ for some $C \subseteq B$ (since *F* is onto). Now $F(C) = \{x \in A : f(x) \in C\}$, so $a \in F(C) \Rightarrow f(a) \in C$. Now if $a' \in A$ and $f(a) = f(a')$, then $f(a') \in C$, so $a' \in F(C) = \{a\}$, and so $a' = a$, and hence *f* is one-to-one.