DEPARTMENT OF MATHEMATICS

|--|

- 1. Suppose that X is a poset with partial ordering \leq , and suppose that A is a non-empty subset of
- X. Show that if A has a least upper bound and a greatest lower bound, then $glb(A) \le lub(A)$. Let L, l be least upper and greatest lower bounds respectively for A. Since $A \ne \emptyset$, let $a \in A$. Then $l \le a$ since l is a lower bound of A, and $a \le L$ since L is an upper bound of A. Hence, $l \le L$ by transitivity.
- 2. Let $A = \mathbf{N} \times \mathbf{N}$, and define a relation ~ on A by $(a,b) \sim (c,d) \Leftrightarrow b + c = a + d$. Prove that ~ is an equivalence relation on A, and describe the equivalence classes.

[Note: This set of equivalence classes, endowed with appropriate definitions of addition and multiplication, is sometimes called the set of *integers*.]

1. Reflexive: Let $(a,b) \in \mathbb{N} \times \mathbb{N}$. Then a+b=b+a, so $(a,b) \sim (a,b)$.

2. Symmetric: Let $(a,b), (c,d) \in \mathbb{N} \times \mathbb{N}$, and suppose $(a,b) \sim (c,d)$. Then b+c = a+d, so d+a = c+b, and hence $(c,d) \sim (a,b)$.

3. Transitive: Let $(a,b), (c,d), (e,f) \in \mathbb{N} \times \mathbb{N}$, and suppose $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$. Then a+d=b+c, and c+f=d+e. Adding the two equations, we get a+d+c+f=b+c+d+e, and hence a+f=b+e, so that $(a,b) \sim (e,f)$.

 $T_{(a,b)} = \{(x,y) : x, y \in \mathbb{N} \text{ and } y = x + (b-a)\} = \text{all points of the plane with natural number}$ coordinates and on the line through (a,b) parallel to y = x. [Naturally, we identify the class containing (a,b) with the integer b-a.]

3. (a) Prove that if functions f:A→B and g:B→C are onto, then so is g∘f.
Let c∈C. ∃b∈B, g(b) = c (since g is onto), and ∃a∈A, f(a) = b (since f is onto), so g∘f(a) = c as required to show that g∘f is onto.

(b) Prove that if $f: A \to B$ is a function and the inverse relation f^{-1} from B to A is a function, then f is one-to-one and onto.

 $f^{-1} = \{(b,a) : f(a) = b\}$. Suppose $a_1, a_2 \in A$ and $f(a_1) = f(a_2)$. Then $(f(a_1), a_1) \in f^{-1}$ and $(f(a_1), a_2) \in f^{-1}$. Since f^{-1} is single valued, we conclude that $a_1 = a_2$, and hence f is one-to-one.

To show f is onto, assume $b \in B$. Then since B is the domain of f^{-1} , $(b,a) \in f^{-1}$ for some $a \in A$. Hence, f(a) = b, as required to show that f is onto.

4. Let $f: A \to B$ be a function, and define a new function $F: \mathcal{D}(B) \to \mathcal{D}(A)$ by

$$F(C) = \{a \in A : f(a) \in C\}$$

for each $C \subseteq B$. Prove that f is one-to-one if and only if F is onto.

Assume that f is one-to-one, and suppose $C \in \mathcal{D}(A)$. Let D = f(C). We show F(D) = C. $x \in F(D) \Leftrightarrow f(x) \in D \Leftrightarrow f(x) = f(c)$ for some $c \in C \Leftrightarrow x = c$ for some $c \in C$ (since f is one-to-one) $\Leftrightarrow x \in C$. Hence F(D) = C, and F is onto.

Conversely, assume F is onto and $a \in A$. Then $\{a\} \in \mathcal{O}(A)$, so $\{a\} = F(C)$ for some $C \subseteq B$ (since F is onto). Now $F(C) = \{x \in A : f(x) \in C\}$, so $a \in F(C) \Rightarrow f(a) \in C$. Now if $a' \in A$ and f(a) = f(a'), then $f(a') \in C$, so $a' \in F(C) = \{a\}$, and so a' = a, and hence f is one-to-one.