MATHS 255

1. Write the following in symbolic form, using symbols $\sim, \land, \lor, \Rightarrow, \Leftrightarrow, \forall, \exists$, letters x,y,z ... for free variables and capital letters A,B,C... for statements.

a. Either Joe is smart or he is lucky but not both.

A: Joe is smart. B: Joe is lucky. $(A \lor B) \land \sim (A \land B)$.

b. Doing homework regularly is a necessary condition for me to pass this course, but it is not sufficient.

A: I do homework regularly. B: I pass this course. $(B \Rightarrow A) \land \sim (A \Rightarrow B)$.

c. It is not the case that if you are either unkind to me or unkind to my friend then I will neither sing to you nor talk to you. (Also rewrite this in a more positive way.)

A: You are kind to me. B: You are kind to my friend. C: I will sing to you. D: I will talk to you. ~ $[(\sim A \lor \sim B) \Rightarrow (\sim C \land \sim D)]$. Equivalent to ~ $(A \land B) \land (C \lor D)$: Even though you have not been kind to both me and my friend, I will sing or talk to you.

d. Every real number is a sum of two distinct real numbers.

 $\forall x \in R \ \exists y \in R \ \exists z \in R \ (y \neq z) \land (x = y + z).$

e. Given any two real numbers, there is a real number which is less than their sum. $\forall x \in R \ \forall y \in R \ \exists z \in R \ z < x + y$

2. Assume A,B,C are statements. Construct truth tables for the following pairs of statements. State whether either implies the other and whether or not they are equivalent:

a. $A \wedge (B \vee C)$, $(A \wedge B) \vee (A \wedge C)$.								
Α	В	С	$B \lor C$	$A \wedge (B \vee C)$	$A \land B$	$A \land C$	$(A \land B) \lor (A \land C)$	
Т	Т	Т	Т	Т	Т	Т	Т	
Т	Т	F	Т	Т	Т	F	Т	
Т	F	Т	Т	Т	F	Т	Т	
Т	F	F	F	F	F	F	F	
F	Т	Т	Т	F	F	F	F	
F	Т	F	Т	F	F	F	F	
F	F	Т	Т	F	F	F	F	
F	F	F	F	F	F	F	F	

 $A \land (P \lor C) \land (A \land P) \lor (A \land C)$

The two statements are equivalent.

b. $A \wedge \sim B$, $\sim (\sim A \lor B)$.								
А	В	~B	A∧~B	~A∨	~(~A∨B)			
				В				
Т	Т	F	F	Т	F			
Т	F	Т	Т	F	Т			
F	Т	F	F	Т	F			
F	F	Т	F	Т	F			

The two statements are equivalent.

c. $(A \Leftrightarrow B) \land (B \Rightarrow \sim C) \land C, \sim A.$								
А	В	C	$A \Leftrightarrow B$	$B \Rightarrow \sim C$	$(A \Leftrightarrow B) \land (B \Longrightarrow \sim C)$	$(A \Leftrightarrow B) \land (B \Longrightarrow \sim C) \land C$	~A	
Т	Т	Т	Т	F	F	F	F	
Т	Т	F	Т	Т	Т	Т	F	
Т	F	T	F	Т	F	F	F	
Т	F	F	F	Т	F	F	F	
F	Т	T	F	F	F	F	Т	
F	Т	F	F	Т	F	F	Т	
F	F	T	Т	Т	Т	F	Т	
F	F	F	Т	Т	Т	Т	Т	

Neither statement implies the other.

3. Let $f: N \to N$ be given by $f(x) = x^3 + 5x$. (N = natural numbers)

a. Use a direct proof to show that if n < k then f(n) < f(k).

Assume n < k. That is, k - n > 0. To show f(n) < f(k) we show that f(k) - f(n) > 0. $f(k) - f(n) = k^3 + 5k - n^3 - 5n = k^3 - n^3 + 5(k - n) = (k - n)(k^2 + kn + n^2 + 5) > 0$

since k - n > 0 and the terms in the second factor are all positive integers.

b. Use a proof by contrapositive to show that if f(n) < f(k) then n < k.

Suppose that $n \ge k$, that is, $n - k \ge 0$. We show (as in part (a)) that $f(n) - f(k) \ge 0$. $f(n) - f(k) = n^3 + 5n - k^3 - 5k = n^3 - k^3 + 5(n - k) = (n - k)(n^2 + nk + k^2 + 5) \ge 0$

since $n-k \ge 0$ and the terms in the second factor are all positive integers.

c. Use a proof by contradiction to show that if f(n) = f(k) then n = k.

Suppose that f(n) = f(k) and $n \neq k$. Then $0 = n^3 + 5n - k^3 - 5k = (n - k)(n^2 + nk + k^2 + 5)$. Hence n - k = 0 (since the terms in the second factor are all positive integers). So n = k and $n \neq k$, a contradiction. d. Use a proof by cases to prove that f(n) is a multiple of 3 for all $n \in N$. [You may assume that every integer can be written uniquely in the form 3k, 3k + 1, or 3k + 2.]

Our assumption says that for each $n \in N$ there are integers r = 0,1,2 and integer k such that n = 3k + r. So $f(n) = f(3k + r) = (3k + r)^3 + 5(3k + r) = 27k^3 + 27k^2r + 9kr^2 + r^3 + 15k + 5r = 3(9k^3 + 9k^2r + 3kr^2 + 5k) + (r^3 + 5r) = 3N + (r^3 + 5r)$ for some integer N.

Case 1: r=0. Then $r^3 + 5r = 0$ which is divisible by 3 so that in this case f(n) is divisible by 3. Case 2: r=1. Then $r^3 + 5r = 6$ which is divisible by 3 so that in this case f(n) is divisible by 3. Case 3: r=2. Then $r^3 + 5r = 18$ which is divisible by 3 so that in this case f(n) is divisible by 3. In any case, f(n) is divisible by 3.

4. a. Prove that for any sets $X, Y, X \subseteq Y$ if and only if $P(X) \subseteq P(Y)$.

Assume first that $X \subseteq Y$. We show that $P(X) \subseteq P(Y)$ by showing that every element of P(X) is an element of P(Y). $A \in P(X) \Rightarrow A \subseteq X \Rightarrow A \subseteq Y \Rightarrow A \in P(Y)$.

Conversely, assume that $P(X) \subseteq P(Y)$. We show that $X \subseteq Y$ by showing that every element of *X* is an element of *Y*. $x \in X \Rightarrow \{x\} \subseteq X \Rightarrow \{x\} \in P(X) \Rightarrow \{x\} \subseteq Y \Rightarrow x \in Y$.

b. Prove that for any sets $A, B, (A \setminus B) \cap B = \emptyset$ and $(A \setminus B) \cup B = A \cup B$.

To prove $(A \setminus B) \cap B \subseteq \emptyset$, we assume that $x \in (A \setminus B) \cap B$ and show that a contradiction results. (I.e. an indirect proof.) So assume $x \in (A \setminus B) \cap B$. Then $x \in A \land x \notin B \land x \in B$, so that $x \notin B \land x \in B$, a contradiction. The reverse inclusion $\emptyset \subseteq (A \setminus B) \cap B$ is obvious since the empty set is a subset of every set.

To prove that $(A \setminus B) \cup B = A \cup B$, we show that each is a subset of the other. $x \in (A \setminus B) \cup B \Rightarrow (x \in A \land x \notin B) \lor (x \in B) \Rightarrow (x \in A) \lor (x \in B) \Rightarrow x \in A \cup B$. Hence, $(A \setminus B) \cup B \subseteq A \cup B$.

On the other hand suppose $x \in A \cup B$. We consider two cases. (1) $x \in B$. (2) $x \notin B$.

(1) $x \in B$ and $B \subseteq (A \setminus B) \cup B$, so $x \in (A \setminus B) \cup B$.

(2) $x \notin B$ and $x \in A \cup B$ implies $x \in A$, and hence $x \in (A \setminus B) \subseteq (A \setminus B) \cup B$.

Thus, $A \cup B \subseteq (A \setminus B) \cup B$.