MATHS 255 Class Notes Chapter 4

Ordered pairs

If $a \in A$ and $b \in B$, then $(a, b) = \{\{a\}, \{a, b\}\}$.

Note: $(a,b) = (c,d) \Leftrightarrow a = c \land b = d$.

Cartesian Product (or Direct Product)

 $A \times B = \{(a, b): a \in A \text{ and } b \in B\}$

Relations

A relation between A and B is any subset of $A \times B$.

A relation on A is any subset of $A \times A$.

If $\rho \subseteq A \times B$ is a relation between A and B, then when we write $a\rho b$, we mean $(a,b) \in \rho$.

A relation ρ on A is:

reflexive if for all $x \in A$, $x \rho x$

symmetric if for all $x, y \in A$, $x\rho y \Rightarrow y\rho x$,

antisymmetric if for all $x, y \in A$, $(x\rho y \land y\rho x) \Rightarrow y = x$,

transitive if for all $x, y, z \in A$, $(x\rho y \land y\rho z) \Rightarrow x\rho z$.

Exmples:

2. $A = \mathbf{N}, x\rho y \Leftrightarrow x + y \text{ odd}.$

3. $A = \mathbf{N}, x\rho y \Leftrightarrow x + y \text{ even.}$

8.
$$A = \{a, b, c\}$$
 (distinct elements),
 $\rho = \{(a, a), (b, b), (c, c), (b, a), (a, c), (c, a)\}.$

Orderings

A relation ρ on A is a *partial ordering* if it is reflexive, antisymmetric and transitive.

A relation ρ on *A* is a *total ordering* if it is a partial ordering and for all $x, y \in A$, $x\rho y \lor y\rho x$.

A poset is a partially ordered set.

A lattice diagram is a graphical representation of a finite poset A with vertices representing points of A and and a path upward from a to b if $a\rho b$.

Suppose A is a poset and \leq a partial ordering on A. and $x \in A$.

x is a maximal element if

for all $y \in A$, $x \le y \Longrightarrow x = y$,

or in other words, there is no element *y* of *A* such that x < y.

x is a *largest* element of A if

for all $y \in A$, $y \le x$.

There can be at most one largest element, but there may be many maximal elements.

Minimal and *smallest* elements are defined analogously.

If $B \subseteq A$, then x is an *upper bound* of B if

for all $y \in B$, $y \leq x$.

(Note, we do not assume $x \in B$.)

B is *bounded above* if it has an upper bound.

If *B* is bounded above and the set of upper bounds of *B* has a smallest element *l*, then *l* is the *least upper bound* (*lub*) of *B*.

Lower bound, bounded below and *greatest lower bound* (*glb*) are defined analogously.