Theorem

Let $K = \mathbf{Q}$, **R**, **C**, \mathbf{Z}_p . Every non-constant polynomial in K[x] has unique factorisation as a product of one or more irreducible polynomials.

gcd and lcm in K[x]

Definition: For $a(x), b(x) \in K[x]$, d(x) is a greatest common divisor of a(x), b(x) if

1. d(x) | a(x), d(x) | b(x), and 2. if c(x) | a(x) and c(x) | b(x) then c(x) | d(x).

Theorem: Let $K = \mathbf{Q}$, **R**, **C**, \mathbf{Z}_p . Then any two polynomials in K[x] have gcd and lcm. gcd(a(x), b(x)) is a polynomial of smallest degree of the form a(x)u(x) + b(x)v(x).

Note: If d(x) is a greatest common divisor of a(x), b(x), then so is kd(x) for all $k \neq 0$ in K.

Euclidean Algorithm in K[x]

For all $a(x), b(x), q(x), r(x) \in K[x]$, if a(x) = b(x)q(x) + r(x) then gcd(a(x), b(x)) = gcd(b(x), r(x)).

The same methods for finding gcd and lcm apply as for \mathbf{Z} .

Factor Theorem

Let $K = \mathbf{Q}$, \mathbf{R} , \mathbf{C} , \mathbf{Z}_p . For all $f(x) \in K[x]$ and for all $a \in K$, $f(a) = 0 \iff f(x) = (x - a)g(x)$ for some $g(x) \in K[x]$.

Corollary (Remainder Theorem)

If f(x) is divided by x - a, the remainder is f(a).

Divisibility and Factorisation in K[x]

Let $K = \mathbf{Q}$, \mathbf{R} , \mathbf{C} , \mathbf{Z}_p . For $a(x), b(x) \in K[x]$, $a(x) \mid b(x)$ if b(x) = a(x)q(x) for some $q(x) \in K[x]$.

Irreducible polynomials

 $f(x) \in K[x]$ (non-constant) is *irreducible* if the only factors of f(x) are trivial, i.e. of the form k or $kf(x), (k \in K)$.

MATHS 255 Class Notes

Polynomials

Let $K = \mathbb{Z}$, \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_n . A polynomial over K is an expression of the form $a(x) = a_0 + a_1 x + \cdots + a_n x^n$ with $n \ge 0$ in \mathbb{Z} and $a_0, \dots, a_n \in K$.

The set of all such polynomials is denoted K[x].

Degree

The *degree* of a(x) is the largest value of d such that $a_d \neq 0$, or $-\infty$ if all $a_i = 0$.

Addition:

$$\sum a_i x^i + \sum b_i x^i = \sum (a_i + b_i) x^i .$$

Multiplication:

$$(\sum a_i x^i)(\sum b_i x^i) = \sum c_k x^k$$
 where $c_k = \sum_{i=0}^k a_i b_{k-i}$.

Division algorithm for polynomials

Let $K = \mathbf{Q}$, **R**, **C**, \mathbf{Z}_p . For each a(x), $b(x) \in K[x]$ with $b(x) \neq 0$, there exist unique q(x), $r(x) \in K[x]$ with $\deg r(x) < \deg b(x)$ such that a(x) = b(x)q(x) + r(x).

Proof: Let $S = \{a(x) - b(x)n(x) : n(x) \in K[x]\}$. Let r(x) be a polynomial of smallest degree in *S*. Proceed as in the proof of the division algorithm for **Z**,

Example: Find quotient and remainder when $3x^5 - 2x^4 + 4x^3 - 1$ is divided by $x^2 - 1$. ($K = \mathbf{Q}$)