MATHS 255 Class Notes Chapter 6 Induction Cont'd

Variations of PMI

1. Different starting point

If r is an integer and P_r , P_{r+1} , P_{r+2} , \cdots are statements satisfying 1. P_r is true, 2. For all integers k = r, r+1, r+2, \cdots , $P_k \Rightarrow P_{k+1}$ is true, then $\forall n \ge r$, P_n is true.

Example

Find all $n \ge 0$ such that $n! > 3^n$.

2. Complete Induction ("Strong Form")

If r is an integer and (P_n) is a sequence of statements satisfying 1. P_1 is true,

2. For all $k \in \mathbb{N}$, P_1 , P_2 , \cdots , P_k together

imply P_{k+1} is true,

then $\forall n \ge r$, P_n is true.

Example

Every integer ≥ 2 is a prime or a product of primes.

3. Well-ordering

A totally ordered set $S \le is$ well-ordered if every non-empty subset of S has a least element.

Theorem (7.1.3) **N** is well-ordered.