Theorem (7.7.4)

 $\overline{c} \in \mathbb{Z}_n$ is invertible if and only if $gcd(c, n) = 1$.

Corollary (7.7.6)

If *p* is prime, then every non-zero element of \mathbf{Z}_p is invertible.

This result allows us to define arithmetic operations on the set of integers modulo *n* as follows:

 $\overline{a} +_{n} \overline{b} = \overline{a+b}$ $\overline{a} \cdot \overline{b} = \overline{ab}$

Theorem (7.6.7, 7.7.1)

1. $+_{n}$ and \cdot_{n} are binary operations on \mathbf{Z}_{n} .

- 2. $+_{n}$ and \cdot_{n} are associative and commutative.
- 3. The distributive law holds. That is, $\forall \overline{a}, \overline{b}, \overline{c} \in \mathbb{Z}_n$, $(\overline{a} +_n \overline{b}) \cdot_n \overline{c} = \overline{a} \cdot_n \overline{c} +_n \overline{b} \cdot_n \overline{c}$

4. $\overline{0}$, $\overline{1}$ act as identity elements under +_n and ·_n respectively.

5. $+_n$ -inverses exist. That is, $\forall \overline{a} \in \mathbf{Z}_n, \ \exists \overline{b} \in \mathbf{Z}_n, \ \overline{a} +_{n} \overline{b} = \overline{0}$

6. $+_n$ -cancellation holds. That is, $\forall \overline{a}, \overline{b}, \overline{c} \in \mathbb{Z}_n$, $\overline{a} +_{n} \overline{b} = \overline{a} +_{n} \overline{c} \Rightarrow \overline{b} = \overline{c}$

Example

⋅ *ⁿ* -inverse and ⋅ *ⁿ* -cancellation do not always work.

Congruences (¶7.6)

Let $n \in \mathbb{N}$. Define a relation \sim on **Z** by $a \sim b \Leftrightarrow n | a - b$

~ is an equivalence relation called "congruence modulo *n*."

We write $a \equiv b \mod n$ to mean $n | a - b$.

Examples

Note (7.6.4): $a \equiv b \mod n$ if and only if *a,b* leave the same remainder when divided by *n*.

Congruence classes

 $\overline{a} = \{x \in \mathbb{Z} : a \equiv x \mod n\}$

 $\overline{0, 1, \dots, n-1}$ are non-overlapping subsets of **Z** that cover **Z**.

 $\mathbf{Z}_n = \{0, 1, \dots, n-1\}$ is called the set of *integers modulo n.*

Theorem (7.6.6)

 $\forall n \in \mathbb{N}, \forall a, b, c \in \mathbb{Z}, \text{ if } a \equiv b \bmod n \text{ and}$ $c \equiv d \mod n$ then

- 1. $a+c \equiv b+d \mod n$
- 2. $ac \equiv bd \mod n$

Corollaries

1. Every integer other than $0, \pm 1$ is uniquely expressible in the form $a = up_1^{e_1} \cdots p_n^{e_n}$ with $u = \pm 1$, *p_i* distinct primes, and $e_i \in \mathbb{N}$.

2. If $a = p_1^{e_1} \cdots p_n^{e_n}$ and $b = p_1^{f_1} \cdots p_n^{f_n}$ with p_i distinct primes, and $e_i, f_i \ge 0$, then $a \mid b$ if and only if $e_i \leq f_i$ for all *i*.

3. If $a = p_1^{e_1} \cdots p_n^{e_n}$ and $b = p_1^{f_1} \cdots p_n^{f_n}$ with p_i distinct primes, and $e_i, f_i \ge 0$, then *n*

$$
\gcd(a, b) = \prod_{i=1} p_i^{g_i} \quad \text{where} \quad g_i = \min\{e_i, f_i\}
$$

4. $\forall a, b \in \mathbb{N}$, *a,b* have a unique least common multiple, and it is given by $m = \frac{ab}{\text{gcd}(a, b)}$.

5. $gcd(a, b) \cdot lcm(a, b) = ab$.

MATHS 255 Class Notes

Fundamental Theorem of Arithmetic (¶7.5)

Preliminaries:

1. Every $n \in \mathbb{N}$ is a prime or a product of primes.

2. $\forall a, b, c \in \mathbb{Z}$ if $a \mid bc$ and $gcd(a, b) = 1$ then $a | c$.

3. If *p* is prime, then $\forall a, b \in \mathbb{Z}$, if $p \mid ab$ then $p \mid a$ or $p \mid b$.

3'. If *p* is prime, then $\forall a_1, \dots, a_n \in \mathbb{Z}$, if $p \mid a_1 \cdots a_n$ then $p \mid a_i$ for some *i*.

Theorem (FTA)

Every integer >1 is uniquely (up to order of factors) expressible as a product of primes.

Proof:

Existence:(1. above)

Uniqueness: (proof by induction) Let *Pn* be the statement, "For any integer that can be written as a product of *n* primes, the factorization is unique up to order of factors."