Theorem (7.7.4) $\overline{c} \in \mathbf{Z}_n$ is invertible if and only if gcd(c,n) = 1.

Corollary (7.7.6) If p is prime, then every non-zero element of \mathbf{Z}_p is invertible.

This result allows us to define arithmetic operations on the set of integers modulo n as follows:

 $\overline{a} +_n \overline{b} = \overline{a + b} \qquad \qquad \overline{a} \cdot_n \overline{b} = \overline{ab}$

Theorem (7.6.7, 7.7.1)

1. $+_n$ and \cdot_n are binary operations on \mathbf{Z}_n .

- 2. $+_n$ and \cdot_n are associative and commutative.
- 3. The distributive law holds. That is, $\forall \overline{a}, \overline{b}, \overline{c} \in \mathbf{Z}_n, \ (\overline{a} +_n \overline{b}) \cdot_n \overline{c} = \overline{a} \cdot_n \overline{c} +_n \overline{b} \cdot_n \overline{c}$

4. $\overline{0},\overline{1}$ act as identity elements under $+_n$ and \cdot_n respectively.

5. $+_n$ -inverses exist. That is, $\forall \overline{a} \in \mathbf{Z}_n, \ \exists \overline{b} \in \mathbf{Z}_n, \ \overline{a} +_n \overline{b} = \overline{0}$

6. $+_n$ -cancellation holds. That is, $\forall \overline{a}, \overline{b}, \overline{c} \in \mathbf{Z}_n, \ \overline{a} +_n \overline{b} = \overline{a} +_n \overline{c} \Longrightarrow \overline{b} = \overline{c}$

Example

 \cdot_n -inverse and \cdot_n -cancellation do not always work.

Congruences (¶7.6)

Let $n \in \mathbf{N}$. Define a relation ~ on **Z** by $a \sim b \Leftrightarrow n \mid a - b$

~ is an equivalence relation called "congruence modulo n."

We write $a \equiv b \mod n$ to mean $n \mid a - b$.

Examples

Note (7.6.4): $a \equiv b \mod n$ if and only if a, b leave the same remainder when divided by n.

Congruence classes

 $\overline{a} = \{x \in \mathbf{Z} : a \equiv x \mod n\}$

 $\overline{0}, \overline{1}, \dots, \overline{n-1}$ are non-overlapping subsets of **Z** that cover **Z**.

 $\mathbf{Z}_n = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$ is called the set of *integers modulo n*.

Theorem (7.6.6)

 $\forall n \in \mathbf{N}, \forall a, b, c \in \mathbf{Z}, \text{ if } a \equiv b \mod n \text{ and } c \equiv d \mod n \text{ then}$

- 1. $a + c \equiv b + d \mod n$
- 2. $ac \equiv bd \mod n$

Corollaries

1. Every integer other than $0, \pm 1$ is uniquely expressible in the form $a = up_1^{e_1} \cdots p_n^{e_n}$ with $u = \pm 1$, p_i distinct primes, and $e_i \in \mathbf{N}$.

2. If $a = p_1^{e_1} \cdots p_n^{e_n}$ and $b = p_1^{f_1} \cdots p_n^{f_n}$ with p_i distinct primes, and $e_i, f_i \ge 0$, then $a \mid b$ if and only if $e_i \le f_i$ for all *i*.

3. If $a = p_1^{e_1} \cdots p_n^{e_n}$ and $b = p_1^{f_1} \cdots p_n^{f_n}$ with p_i distinct primes, and $e_i, f_i \ge 0$, then $gcd(a,b) = \prod_{i=1}^n p_i^{g_i}$ where $g_i = \min\{e_i, f_i\}$

4. $\forall a, b \in \mathbf{N}$, a, b have a unique least common multiple, and it is given by $m = \frac{ab}{\gcd(a,b)}$.

5. $gcd(a,b) \cdot lcm(a,b) = ab$.

MATHS 255 Class Notes

Fundamental Theorem of Arithmetic (¶7.5)

Preliminaries:

1. Every $n \in \mathbf{N}$ is a prime or a product of primes.

2. $\forall a, b, c \in \mathbb{Z}$ if $a \mid bc$ and gcd(a, b) = 1then $a \mid c$.

3. If *p* is prime, then $\forall a, b \in \mathbb{Z}$, if $p \mid ab$ then $p \mid a$ or $p \mid b$.

3'. If *p* is prime, then $\forall a_1, \dots, a_n \in \mathbb{Z}$, if $p \mid a_1 \dots a_n$ then $p \mid a_i$ for some *i*.

Theorem (FTA)

Every integer >1 is uniquely (up to order of factors) expressible as a product of primes.

Proof:

Existence:(1. above)

Uniqueness: (proof by induction) Let P_n be the statement, "For any integer that can be written as a product of n primes, the factorization is unique up to order of factors."