Method for finding gcd and lcm without factorization. (Euclidean Algorithm)

Theorem (7.3.1) If $a, b, q, r \in \mathbb{Z}$ and a = bq + r, then gcd(a, b) = gcd(b, r).

Other conditions for gcd

Assume $a, b \neq 0$ and d > 0

The following conditions are equivalent to d = gcd(a,b):

1. *d* is a common divisor of *a*,*b* and for all common divisors *c* of *a*,*b*, $c \mid d$ (i.e. the usual definition).

2. (7.4.2) *d* is the smallest positive integer of the form ax + by, $x, y \in \mathbb{Z}$.

3. (7.2.18) *d* is a common divisor of *a*,*b* and for all common divisors *c* of *a*,*b*, $c \le d$.

Relatively prime pairs of integers

 $a, b \in \mathbb{Z}$ are *relatively prime* if gcd(a, b) = 1.

Equivalently, for some $x, y \in \mathbb{Z}$, ax + by = 1.

Theorem (7.4.4)

1. If a,b are relatively prime and $a \mid bc$, then $a \mid c$.

2 If a,b are relatively prime and a | c and b | c, then ab | c.

MATHS 255 Class Notes ¶ 7.2

gcd, lcm

Suppose $a, b, d, m \in \mathbb{Z}$, $a, b \neq 0$.

d is a *common divisor* of *a*,*b* if and only if $d \mid a$ and $d \mid b$.

m is a *common multiple* of *a*,*b* if and only if $a \mid m$ and $b \mid m$.

d is a *greatest common divisor* of *a*,*b* if and only if *d* is largest (with respect to the partial ordering |) in the set of positive common divisors of *a*,*b*. I.e. if *c* is any common divisor of *a*,*b* then c | d.

m is a *least common multiple* of *a*,*b* if and only if *m* is smallest (with respect to the partial ordering |) in the set of positive common multiples of *a*,*b*. I.e. if *n* is any common multiple of *a*,*b* then $m \mid n$.

Theorem.(7.2.16) Any two non-zero integers have a unique gcd.

Proof:

Existence.

Uniqueness.