MATHS 255 Class Notes Natural numbers, integers, divisibility (7.1, 7.2)

Division Algorithm (7.2.1)

For all $m \in \mathbb{Z}$, $n \in \mathbb{N}$, there exists unique $q \in \mathbb{Z}$, $r \in \{0, \dots, n-1\}$ such that $p \in \mathbb{Z}$ m = nq + r.

[q = quotient, r = remainder]

Divisibility

For all $m, n \in \mathbb{Z}$, we say "*m* divides *n*" (written $m \mid n$) if for some $r \in \mathbb{Z}$, mr = n.

Basic properties:

 $\forall a, b, c \in \mathbf{Z}$

- 1. $a \mid a$
- 2. $\pm 1 | a$
- 3. *a* | 0
- 4. If $a \mid b$ then $a \mid -b$
- 5. If $a \mid b$ and $b \neq 0$, then $\mid a \mid \leq \mid b \mid$.
- 6. If $a \mid b$ and $b \mid a$ then $a = \pm b$.
- 7. If $a \mid b$ and $b \mid c$ then $a \mid c$.

"Divides" is a partial ordering on the set of natural numbers (but not on the set of integers).

Primes

 $p \in \mathbb{Z}$ is *prime* if p > 1 and its only positive divisors are 1, *p*.

The prime numbers are the minimal elements in $N \setminus \{1\}$ under the relation of "divides".

Theorem. The number of primes is infinite. (Indirect proof)