DEPARTMENT OF MATHEMATICS

MATHS 255FC Assignment 8 Due 26th September 2001

- 1. Prove each of the following from the axioms given in the handout on real numbers.
 - (a) Given $a, b \in \mathbf{R}$, show there is a unique x such that a + x = b.
 - (b) If x = b a is defined to be this x, and -a is defined to be 0 a show:
 - (i) b-a=b+(-a) (ii) a(b-c)=ab-ac (iii) 0.a=a.0=0 (iv) ab=ac, $a \ne 0 \Rightarrow b=c$
 - (c) (i) $x < y \Rightarrow x + z < y + z$ (ii) 1 > 0 (iii) $x < y \Rightarrow -x > -y$
 - (d) $A, B \subseteq \mathbb{R}$, $A, B \neq \emptyset$, $A \subseteq B$ and B is bounded above, show lubA \leq lubB.
- 2. (a) Show from the definition of absolute value in the real numbers handout that $|x + y| \le |x| + |y|$.
 - (b) Use (a) to prove by induction that $|x_1 + x_2 + ... + x_n| \le |x_1| + |x_2| + ... + |x_n|$.
 - (c) Show that the distance function d(x, y) = |x y| obeys the triangle law: $d(x, z) \le d(x, y) + d(y, z)$.
- **3.** Find the least upper bound and greatest lower bound of each of the following subsets of \mathbf{R} if they exist and determine if either of these is an element of the set concerned.

(i)
$$\mathbf{R} \setminus \{0\}$$
 (ii) $(-\infty, -1)$ (iii) $[-\pi, 2)$ (iv) $[-\pi, 2) \cap (\mathbf{R} \setminus \mathbf{Q})$ (v) $\left\{\frac{1}{n^2}: n \in \mathbf{N}\right\}$.

- **4.** For each of the following sequences, determine whether or not it is:
 - (a) convergent and if so find its limit,
 - (b) bounded and if so find a convergent subsequence
 - (c) find a subsequence which is increasing, or one which is decreasing, or both if possible.

(i)
$$\left\{1^n + (-1)^n : n \in \mathbb{N}\right\}$$
 (ii) $\left\{\frac{1}{n^2} : n \in \mathbb{N}\right\}$ (iii) $\left\{\frac{1^n}{n^2} + \frac{(-1)^n}{n^2} : n \in \mathbb{N}\right\}$ (iv) $\left\{n! : n \in \mathbb{N}\right\}$ (v) $\left\{\frac{n!}{n^n} : n \in \mathbb{N}\right\}$

Prove each of the following specifically from the axioms given in the handout on real numbers.

(a) Given $a, b \in \mathbf{R}$, show there is a unique x such that ax = b.

There exists y: ay = 1 (multiplicative inverse). Let x = by then ax = aby = bay = b.1 = b.

If ax = b, ax' = b then x - x' = 1(x - x') = ay(x - x') = ya(x - x') = yax - yax' = yb - yb = 0, so x = x'.

If x=b/a is defined to be ax = b, show:

- (i) a/b + c/d = (ad + bc)/bd if $b, d \neq 0$. (ii) $(a/b) \cdot (c/d) = ac/bd$ if $b, d \neq 0$.
- (i) Let a = x.b, c = y.d, then a/b + c/d = x + y.

Now consider z = (ad + bc)/bd = (xbd + byd)/bd = (x + y)bd/bd, then z(bd) = (x + y)bd so z = x + y.

- (ii) z = ac/bd = xbyd/bd = xybd/bd, so zbd = xybd, and z = xy.
- (b) (i) x < y, $y < z \Rightarrow x < z$ (ii) x < y, $z > 0 \Rightarrow xz < yz$.
- (i) x < y, $y < z \Leftrightarrow y x$, $z y \in P \Rightarrow z y + y x = z x \in P \Leftrightarrow x < z$.
- (ii) x < y, $z > 0 \Leftrightarrow y x$, $z \in P \Rightarrow z(y x) = zy zx \in P \Rightarrow xz < yz$.
- (c) (i) $|xy| = |x| \cdot |y|$ (ii) $||x| |y|| \le |x y|$.
- (i) $x.y \ge 0$, $|xy| = x.y = |x| \cdot |y| = |-x| \cdot |-y|$, x.y < 0, $|xy| = -x.y = |x| \cdot |-y| = |-x| \cdot |y|$.
- (ii) $x, y \ge 0 \|x| \|y\| = |x y|, x, y < 0 \|x| \|y\| = |-x -y| = |x y|$

 $x \ge 0, y < 0 \parallel x \mid - \mid y \parallel = \mid x + y \mid < \mid x + -y \mid = \mid x - y \mid$ since x, -y both have the same sign but x, y have opposite sign. $x < 0, y \ge 0 \parallel x \mid - \mid y \parallel = \mid -x + y \mid < \mid x - y \mid$ for the same reason.