1. For each design below determine the symmetry group.

- 2. If G is a group, Show that $(a * b)^2 = a^2 * b^2 \implies a * b = b * a$.
- 3. If G is a group for which every element $g \in G$ has $g^2 = e$, Show that G is commutative.
- 4. Let *G* be the group of matrices of each of the linear transformations corresponding to the group of symmetries of the square with vertices $(\pm 1, \pm 1)$ under matrix multiplication. Show *G* is isomorphic to D₄.
- 5. (a) Show that $Z_{9} \setminus \{0\}$ is not a multiplicative group.
 - (b) Let U(9) = { n̄:n is relatively prime to 9 }.
 Show (U(9), ●₉) is a multiplicative group, where ●₉ is multiplication modulo 9.
 - (c) Show U(9) is isomorphic to the additive group Z_6 .

3. Consider the symmetries of an equilateral triangle.

(i) Show this group is isomorphic to the group of permutations of three elements S_3 .

The Cayley table for the group illustrated on page 5 of the Groups notes is shown below reordered

The isomorphism between S₃ and the group D₃ of symmetries of the triangle is defined by each of α , β , γ with the reflections in the three axes shown in the diagram. ϕ , ψ are associated with rotations of $\frac{2\pi}{3}$ and $\frac{4\pi}{3} = \frac{-2\pi}{3}$ respectively as shown in the triangle diagram. This is clearly an isomorphism because the symmetries permute the vertices exactly as in S₃. [6]

(ii) Show the subgroup consisting of rotations of the triangle is isomorphic with the additive group \mathbb{Z}_3 of integers modulo 3.

The first three elements in the above Cayley table i.e. the identity and the two rotations are clearly additive angles of $0, \frac{\pi}{3}, \frac{2\pi}{3}$ modulo 2π precisely the same as the additive group of 0, 1, 2 mod 3. viz $\begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \\ 2 & 0 & 1 \end{pmatrix}$

[2]

-	R ₀	<i>R</i> ₉₀	<i>R</i> ₁₈₀	<i>R</i> ₂₇₀	H	V	D	D'
R_0	R ₀	R ₉₀	R ₁₈₀	R ₂₇₀	Н	V	D	D'
R ₉₀	R ₉₀	R_{180}	R ₂₇₀	R_0	D'	D	H	V
R ₁₈₀	R_{180}	R ₂₇₀	R_0	R_{90}	V	H	D'	D
R270	R ₂₇₀	R_0	R_{90}	R_{180}	D	D'	V	Н
Н	H	(D)	V	D'	R_0	R_{180}	R_{90}	R_{270}
V	V	\widetilde{D}'	Н	D	R_{180}	R_0	R ₂₇₀	R_{90}
D	D	V	D'	Н	R ₂₇₀	R_{90}	R_0	R ₁₈₀
D'	D'	Н	D	V	R_{90}	R ₂₇₀	R ₁₈₀	R_0

The Cayley table of D_4