

1. Consider $f(x) = \begin{cases} x \cdot \sin \frac{1}{x} \\ x \cdot \sin \frac{1}{x} \end{cases}$ *x x* $f(x) = \begin{cases} x \cdot \sin \frac{1}{x}, \\ 1 \cdot \sin \frac{1}{x} \end{cases}$, $=\begin{cases} x \cdot \sin \frac{1}{x}, & x \neq y \end{cases}$ = \mathbf{I} { I $\overline{\mathsf{I}}$ $\frac{1}{x}, x \neq 0$ $0, x = 0$

(a) Show from first principles that $f(x)$ is continuous at $x = 0$. (b) Is $f(x)$ continuous at other points in **R**? Explain.

(c) Determine whether or not $\bar{f}(x)$ is differentiable at 0?

(d) Is $f(x)$ differentiable at other points in **R**? Explain.

2. Determine where the following function is continuous and where it is differentiable:

$$
f(x) = \begin{cases} x^4 - 3x^3 + 2x^2, & x \in \mathbf{Q} \\ 0, & x \notin \mathbf{Q} \end{cases}
$$

3. (a) Suppose that *f* is continuous and bounded on **R**. Either prove that *f* attains a maximum or a minimum value on **R**, or give a counter example.

(b) Suppose now that *f* is continuous on **R** and $f(x) \rightarrow 0$ as $x \rightarrow \pm \infty$ Does this change your conclusion? Prove your result or give a counter-example.

4. Let a real valued function *f* be continuous on the closed interval [a,b]. Suppose that for each $x \in [a,b]$ there exists there exists a $y \in [a,b]$ such that $|f(y)| \leq \frac{1}{2}|f(x)|$ 2 . Prove there exists a $z \in [a,b]$ for which $f(z) = 0$. (Hint: Use the Extreme Value Theorem).