THE UNIVERSITY OF AUCKLAND

FIRST SEMESTER, 2001 Campus: City

MATHEMATICS

Principles of Mathematics

(Time allowed: THREE hours)

NOTE: Answer ALL the questions. All questions carry equal marks.

- 1. Let $f : \mathbb{N} \to \mathbb{N}$ be given by $f(x) = x^3 + 5x$.
 - (a) Use a **direct proof** to show that if n < k then f(n) < f(k).
 - (b) Use a **proof by contraposition** to show that if f(n) < f(k) then n < k.
 - (c) Use a **proof by contradiction** to show that if f(n) = f(k) then n = k.
 - (d) Use a **proof by cases** to prove that f(n) is a multiple of 3 for all $n \in \mathbb{N}$. [You may assume that every integer can be written uniquely in the form 3k, 3k + 1 or 3k + 2.]
- **2.** (a) We define the relation ρ on \mathbb{Z} by declaring that, for $x, y \in \mathbb{R}$,

 $x \rho y \qquad \Longleftrightarrow \qquad x \le y^2.$

Which of the following are true and which are false? Give brief reasons for you answers.

- (i) ρ is reflexive.
- (ii) ρ is symmetric.
- (iii) ρ is antisymmetric.
- (iv) ρ is transitive.
- (b) Let ρ and σ be equivalence relations on a set A. Define a relation τ on A by declaring that, for $a, b \in A$, $a \tau b$ if and only if $(a \rho b \land a \sigma b)$. Show that τ is an equivalence relation.

3. A blob function is a function $f : \mathbb{R} \to \mathbb{R}$ such that if $x, y \in \mathbb{R}$ with |x - y| < 1 then |f(x) - f(y)| < 1.

- (a) (i) Give an example of a blob function which is not continuous
 (ii) Give an example of a continuous function f : ℝ → ℝ which is not a blob function.
- (b) Show that if f and g are blob functions then $f \circ g$ is a blob function.
- (c) Show that if f and g are blob functions then the function $h: \mathbb{R} \to \mathbb{R}$ defined by

$$h(x) = \frac{f(x) + g(x)}{2}$$

is a blob function.

- **4.** (a) Let $a, b \in \mathbb{N}$. Let $l \in \mathbb{N}$ be a common multiple of a and b. Prove that the following are equivalent:
 - I. for every positive common multiple m of a and $b, l \leq m$.
 - II. for every common multiple m of a and b, $l \mid m$.

[Hint: if m is a common multiple of a and b, and m = ql + r, you can show that r is a common multiple of a and b.]

- (b) Let $a, b \in \mathbb{N}$. Suppose that there exist $x, y \in \mathbb{Z}$ with ax + by = 1. Show that a and b are relatively prime.
- 5. (a) Let $(\mathbb{Z}_n, +_n)$ be the group of integers modulo n under addition.
 - (i) Write out the Cayley Tables for \mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$ and show they are not isomorphic.
 - (ii) Show that \mathbb{Z}_4 is isomorphic to a geometrical symmetry group, demonstrating the isomorphism by using Cayley tables.
 - (b) (i) Show that in any group the inverse of an element is unique.
 - (ii) Prove that a group is commutative if and only if the function which maps every element to its inverse is an isomorphism.
- 6. (a) (i) Give an example of a number system which obeys the field and order axioms, but not the completeness axiom. Explain why your example does not satisfy the completeness axiom.
 - (ii) Give an example of a number system which obeys the field axioms but not the order axioms. Explain why your example does not satisfy the order axioms.
 - (b) Use the order axioms to prove:
 - (i) For arbitrary $x, y \in \mathbb{R}$ exactly one of the following holds: x < y, y < x, x = y.
 - (ii) For arbitrary $x, y \in \mathbb{R}, |x+y| \le |x|+|y|$.
- 7. (a) Consider the sequence $\{u_n\}_{n=0}^{\infty}$, where $u_n = \frac{2}{1 + e^{-n}}$.
 - (i) Show that $\{u_n\}_{n=0}^{\infty}$ is monotonic and bounded.
 - (ii) Find the greatest lower bound and least upper bound of $\{u_n\}_{n=0}^{\infty}$ and determine whether either is an element of $\{u_n\}_{n=0}^{\infty}$.
 - (iii) Using the first principles definition of a convergent sequence show that the sequence $\{u_n\}_{n=0}^{\infty}$ is convergent to its least upper bound.
 - (b) Suppose f is continuous on [a, b] and f(a) < k < f(b). Show from first principles that there is some $c \in [a, b]$ such that f(c) = k.
- 8. (a) Let f be a real valued function. Show that if f is continuous then |f| is continuous.
 - (b) Let f be a continuous real valued function on [a, b]. Suppose that for each $x \in [a, b]$ there exists a $y \in [a, b]$ such that $|f(y)| \leq \frac{1}{2}|f(x)|$. Prove that there exists a $z \in [a, b]$ for which f(z) = 0. [Hint: either use the Extreme Value Theorem, or use a similar method to the proof of that theorem]