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1. (a) The contrapositive of A(n) is “If n+ 2 is not prime then n is not prime.”

(b) The converse of A(n) is “If n+ 2 is prime then n is prime.”

(c) The negation of A(n) is “n is prime but n+ 2 is not prime.”

(d) A(n) true for some n ∈ N: for example, A(5) is true.

(e) A(n) is true for every n: for example, A(7) is false.

(f) Since the contrapositive of A(n) is equivalent to A(n) itself, from (d) and (e) we see that the
contrapositive is true for some n ∈ N but not for all n ∈ N.

(g) The converse of A(n) is true for some but not all n: for example, the converse of A(7) is true
but the converse of A(9) is false.

2. (a) Reflexive: Let x ∈ X. Then f(x) = f(x), so f(x) ≤ f(x), so x ρ x. Hence ρ is reflexive.
Transitive: Let x, y, z ∈ X with x ρ y and y ρ z. Then f(x) ≤ f(y) and f(y) ≤ f(z), so

f(x) ≤ f(z), so x ρ z. Hence ρ is transitive.

(b) Suppose first that ρ is antisymmetric. Let x, y ∈ X with f(x) = f(y). Then f(x) ≤ f(y), so
x ρ y, and f(y) ≤ f(x) so y ρ x. Since ρ is antisymmetric and x ρ y and y ρ x, we have x = y.
Thus f is one-to-one.
Conversely, suppose that f is one-to-one. Let x, y ∈ X with x ρ y and y ρ x. Then f(x) ≤ f(y)
and f(y) ≤ f(x), so f(x) = f(y), so (since f is one-to-one) x = y. Thus ρ is antisymmetric.

3. (a) Suppose that f is a blah function. We have 0 + 0 = 0, so f(0 + 0) = f(0), so f(0) · f(0) = f(x).
But the only solutions of x · x = x in R are x = 0 and x = 1, and we cannot have f(0) = 0
(since f : Z→ R \ {0}). So f(0) = 1.

(b) Suppose that f is a blah function. Let x ∈ Z. Then f(x+(−x)) = f(0), so f(x)·f(−1) = f(0) =

1 (by part (a)). Dividing by f(x) (which we can do since f(x) 6= 0) we have f(−x) =
1

f(x)
.

(c) Let f and g be blah functions with f(1) = g(1). For n ∈ N let Pn be the statement that
f(n) = g(n). We prove by induction that Pn is true for all n.

Base: We are given that f(1) = g(1), so P1 is true.
Inductive Step: Suppose n ∈ N with Pn true. Then f(n) = g(n), so

f(n+ 1) = f(n) · f(1) since f is blah
= g(n) · f(1) by inductive hypothesis, and the fact that f(1) = g(1)
= g(n+ 1) since g is blah.

Hence Pn+1 is true.

Hence, by induction, Pn is true for all n ∈ N.

(d) Let f and g be blah functions with f(1) = g(1). To show that f = g we must show that f and
g have the same domain and that f(x) = g(x) for all x ∈ dom(f). Well, dom(f) = dom(g) = Z,
so we only need to show that f(x) = g(x) for all x ∈ Z. So let x ∈ Z. We have three cases to
consider: x > 0, x = 0 and x < 0.
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Case 1: When x > 0 we have x ∈ N so by (c) above we have f(x) = g(x).
Case 2: When x = 0 we have f(x) = 1 = g(x) by (a).

Case 3: When x < 0 we have −x ∈ N, so f(−x) = g(−x) by Case 1, so
1

f(x)
=

1
g(x)

by (b),

so f(x) = g(x).

Hence in any case we have f(x) = g(x), as required.

4. (a) We must show that the equation has a solution, and that the solution is unique. Note that,
if we multiply the equation by c we get c ·n a ·n x = c ·n b, in other words x = c ·n b (since
c ·n a = ca = 1. This suggests our solution should be x = c ·n b. So we substitute this value into
the equation:

a ·n (c ·n b) = (a ·n c) ·n b = 1 ·n b = b,

so this is indeed a solution.
Now we must show that it is unique, so suppose that x and y are both solutions, in other words
that a ·n x = b and x ·n y = b. Then a ·n x = a ·n y, so c ·n a ·n x = c ·n a ·n y, i.e. 1 ·n x = 1 ·n y,
so 1 ·n x = 1 ·n y, i.e. x = y, as required.

(b) We use Euclid’s Algorithm:
35 1 0
16 0 1
3 1 −2
1 −5 11
0 16 −35

From this we see that 35 · (−5) + 16 · 11 = 1. Multiplying by 3 we have 35 · (−15) + 16 · 33 = 3,
so x = −15, y = 33 is a solution, and the general solution is

x = −15 + 16t, y = 33− 35t for t ∈ Z.
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