MATHS 255 FC	Solutions to ClassTest,	First Semester, 2001	26 April, 2001
--------------	-------------------------	----------------------	----------------

- 1. (a) The contrapositive of A(n) is "If n + 2 is not prime then n is not prime."
 - (b) The converse of A(n) is "If n + 2 is prime then n is prime."
 - (c) The negation of A(n) is "n is prime but n + 2 is not prime."
 - (d) A(n) true for some $n \in \mathbb{N}$: for example, A(5) is true.
 - (e) A(n) is true for every n: for example, A(7) is false.
 - (f) Since the contrapositive of A(n) is equivalent to A(n) itself, from (d) and (e) we see that the contrapositive is true for some $n \in \mathbb{N}$ but not for all $n \in \mathbb{N}$.
 - (g) The converse of A(n) is true for some but not all n: for example, the converse of A(7) is true but the converse of A(9) is false.
- **2.** (a) **Reflexive:** Let $x \in X$. Then f(x) = f(x), so $f(x) \leq f(x)$, so $x \rho x$. Hence ρ is reflexive. **Transitive:** Let $x, y, z \in X$ with $x \rho y$ and $y \rho z$. Then $f(x) \leq f(y)$ and $f(y) \leq f(z)$, so $f(x) \leq f(z)$, so $x \rho z$. Hence ρ is transitive.
 - (b) Suppose first that ρ is antisymmetric. Let $x, y \in X$ with f(x) = f(y). Then $f(x) \leq f(y)$, so $x \rho y$, and $f(y) \leq f(x)$ so $y \rho x$. Since ρ is antisymmetric and $x \rho y$ and $y \rho x$, we have x = y. Thus f is one-to-one. Conversely, suppose that f is one-to-one. Let $x, y \in X$ with $x \rho y$ and $y \rho x$. Then $f(x) \leq f(y)$

Conversely, suppose that f is one-to-one. Let $x, y \in X$ with $x \rho y$ and $y \rho x$. Then $f(x) \leq f(y)$ and $f(y) \leq f(x)$, so f(x) = f(y), so (since f is one-to-one) x = y. Thus ρ is antisymmetric.

- 3. (a) Suppose that f is a blah function. We have 0+0=0, so f(0+0) = f(0), so f(0) ⋅ f(0) = f(x). But the only solutions of x ⋅ x = x in R are x = 0 and x = 1, and we cannot have f(0) = 0 (since f : Z → R \ {0}). So f(0) = 1.
 - (b) Suppose that f is a blah function. Let $x \in \mathbb{Z}$. Then f(x+(-x)) = f(0), so $f(x) \cdot f(-1) = f(0) = 1$ (by part (a)). Dividing by f(x) (which we can do since $f(x) \neq 0$) we have $f(-x) = \frac{1}{f(x)}$.
 - (c) Let f and g be blah functions with f(1) = g(1). For n ∈ N let P_n be the statement that f(n) = g(n). We prove by induction that P_n is true for all n.
 Base: We are given that f(1) = g(1), so P₁ is true.

Inductive Step: Suppose $n \in \mathbb{N}$ with P_n true. Then f(n) = g(n), so

$$\begin{split} f(n+1) &= f(n) \cdot f(1) & \text{ since } f \text{ is blah} \\ &= g(n) \cdot f(1) & \text{ by inductive hypothesis, and the fact that } f(1) = g(1) \\ &= g(n+1) & \text{ since } g \text{ is blah.} \end{split}$$

Hence P_{n+1} is true.

Hence, by induction, P_n is true for all $n \in \mathbb{N}$.

(d) Let f and g be blah functions with f(1) = g(1). To show that f = g we must show that f and g have the same domain and that f(x) = g(x) for all $x \in \text{dom}(f)$. Well, $\text{dom}(f) = \text{dom}(g) = \mathbb{Z}$, so we only need to show that f(x) = g(x) for all $x \in \mathbb{Z}$. So let $x \in \mathbb{Z}$. We have three cases to consider: x > 0, x = 0 and x < 0.

Case 1: When x > 0 we have $x \in \mathbb{N}$ so by (c) above we have f(x) = g(x). **Case 2:** When x = 0 we have f(x) = 1 = g(x) by (a).

Case 3: When x < 0 we have $-x \in \mathbb{N}$, so f(-x) = g(-x) by Case 1, so $\frac{1}{f(x)} = \frac{1}{g(x)}$ by (b), so f(x) = g(x).

Hence in any case we have f(x) = g(x), as required.

4. (a) We must show that the equation has a solution, and that the solution is unique. Note that, if we multiply the equation by \overline{c} we get $\overline{c} \cdot_n \overline{a} \cdot_n \overline{x} = \overline{c} \cdot_n \overline{b}$, in other words $\overline{x} = \overline{c} \cdot_n \overline{b}$ (since $\overline{c} \cdot_n \overline{a} = \overline{ca} = \overline{1}$. This suggests our solution should be $\overline{x} = \overline{c} \cdot_n \overline{b}$. So we substitute this value into the equation:

$$\overline{a} \cdot_n (\overline{c} \cdot_n \overline{b}) = (\overline{a} \cdot_n \overline{c}) \cdot_n \overline{b} = \overline{1} \cdot_n \overline{b} = \overline{b},$$

so this is indeed a solution.

Now we must show that it is unique, so suppose that \overline{x} and \overline{y} are both solutions, in other words that $\overline{a} \cdot_n \overline{x} = \overline{b}$ and $\overline{x} \cdot_n \overline{y} = \overline{b}$. Then $\overline{a} \cdot_n \overline{x} = \overline{a} \cdot_n \overline{y}$, so $\overline{c} \cdot_n \overline{a} \cdot_n \overline{x} = \overline{c} \cdot_n \overline{a} \cdot_n \overline{y}$, i.e. $\overline{1} \cdot_n \overline{x} = \overline{1} \cdot_n \overline{y}$, so $\overline{1} \cdot_n x = \overline{1} \cdot_n \overline{y}$, i.e. $\overline{x} = \overline{y}$, as required.

(b) We use Euclid's Algorithm:

35	1	0
16	0	1
3	1	-2
1	-5	11
0	16	-35

From this we see that $35 \cdot (-5) + 16 \cdot 11 = 1$. Multiplying by 3 we have $35 \cdot (-15) + 16 \cdot 33 = 3$, so x = -15, y = 33 is a solution, and the general solution is

$$x = -15 + 16t, y = 33 - 35t$$
 for $t \in \mathbb{Z}$.