THE UNIVERSITY OF AUCKLAND MATHS 255 FC

CLASS TEST, FIRST SEMESTER, 2001

MATHEMATICS

Principles of Mathematics

(Time allowed: 90 MINUTES)

1. For each natural number n, let A(n) be the statement

"If n is prime then n+2 is prime."

- (a) Write down the contrapositive of A(n).
- (b) Write down the converse of A(n).
- (c) Write down the negation of A(n).
- (d) Is A(n) true for some $n \in \mathbb{N}$? If so, give an example, if not give a proof.
- (e) Is A(n) true for every $n \in \mathbb{N}$? If so, give a proof, if not give a counterexample.
- (f) Is the contrapositive of A(n) true for some $n \in \mathbb{N}$? Is it true for all $n \in \mathbb{N}$? Give brief reasons for your answer.
- (g) Is the converse of A(n) true for some $n \in \mathbb{N}$? Is it true for all $n \in \mathbb{N}$? Give brief reasons for your answer.

2. Let X be a set, and $f: X \to \mathbb{R}$ a function. Define a relation ρ on X by declaring that, for $x, y \in X$,

$$x \rho y$$
 if and only if $f(x) \le f(y)$.

- (a) Show that ρ is reflexive and transitive.
- (b) Show that ρ is antisymmetric if and only if f is one-to-one.

3. A blah function is a function $f : \mathbb{Z} \to \mathbb{R} \setminus \{0\}$ such that, for every $x, y \in \mathbb{Z}$, $f(x+y) = f(x) \cdot f(y)$.

- (a) Show that if f is a blah function then f(0) = 1 [Hint: f(0+0) = f(0), and the only solutions of $x^2 = x$ in \mathbb{R} are 0 and 1.]
- (b) Show that if f is a blah function and $x \in \mathbb{Z}$ then $f(-x) = \frac{1}{f(x)}$.
- (c) Let f and g be blah functions with f(1) = g(1). Use induction to show that f(x) = g(x) for all $x \in \mathbb{N}$.
- (d) Let f and g be blah functions with f(1) = g(1). Show that f = g.
- **4.** (a) Let $a, b, n \in \mathbb{N}$. Suppose that there exists an integer c such that $ac \equiv 1 \pmod{n}$. Show that the equation $\overline{a} \cdot_n \overline{x} = \overline{b}$ has a unique solution $\overline{x} \in \mathbb{Z}_n$.
 - (b) Find all integer solutions x and y to the equation 35x + 16y = 3.