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1. (a) Show first principles that the sequence 
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   (b) Hence or otherwise show that the sequence 
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Note that 
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 is monotone increasing.
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 is bounded above by 4.

Since x  is a monotone increasing function , x y x y< ⇒ <  so
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 is monotone increasing, and

bounded above by 4 2= . Hence it is convergent. [4 marks]

2. Consider the set Σ2  consisting of all sequences on the two elements 0 and 1,  with the distance     

    function between any two sequences s s s s= 0 1 2, , ,... and t t t t= 0 1 2, , ,...  defined by d s t
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(a) Show Σ2 ,d( ) is a metric space i.e. that d  is a metric distance function obeying 9.5.9 on p 123 of 
     "Chapter 0".
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Since ∀ − + − ≥ −i s t t u s ui i i i i i . [4 marks]

(b) Show that 
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(c) Show that Σ2 ,d( ) is complete i.e. that every Cauchy sequence is convergent. [4 marks] 

Let s s s s ii i i i= ={ }0 1 2 0 1 2, ,  ...,  , ,  ...   be a Cauchy sequence of sequences in Σ2 . 
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So define s s sL L L={ }1 2, ,  ...,  inductively for each p.  Then s i si L , ,  ...  ={ } → { }0 1 2  since 
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3. A metric space is called compact if every sequence in the space has a convergent subsequence.  
    A subset of R is compact if and only if it is closed an bounded.

(a) Use the fact that every bounded sequence has a convergent subsequence (see sequence notes for a proof 
      of this) to show that [0,1] is compact.

Since [0,1] is bounded, so is any sequence x ii  , ,  ...  ={ }0 1 2  in [0,1].  Since any bounded sequence has a
convergent subsequence, so does any sequence in [0,1].  Also since v is closed this sequence must tend to a
limit in [0,1]. Otherwise x i Li  , ,  ...  [ , ]={ } → ∉0 1 2 0 1 .  Say L > 1, then L d= +1 .

but xi ∈[ , ]0 1 , so x L di − ≥  contradicting convergence to L. [4 marks]

(b) Give examples of a sequences in (0,1) and R which have no convergent subsequence in their respective 
    sets.
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→ ∉( , ),  n{ } → ∞ ∉R.  These are both monotone and thus have every subsequence tending to

the same "limit", so neither has a subsequence convergent in their respective set. [2 marks]

(c) Show that Σ2 ,d( ) is compact. 

We  show an arbitrary sequence s s s s ii i i i= ={ }0 1 2 0 1 2, ,  ...,  , ,  ...   in Σ2  has a convergent subsequence. 

Consider the first terms si
0  in each of the sequence s ii ,  , ,  ...= 0 1 2  in the sequence of sequences si{ }.

Either there is an infinite number of both 0s and 1s or there is a finite number of one of them.
If there are a finite number of 0s pick the subsequence si1{ } consisting of all those sequences  s si i: 0 1= .

Otherwise pick the corresponding subsequence si0{ }, consisting of all those sequences  s si i: 0 0= .

Call this chosen subsequence sin0{ } and define n or0 0 1= ,     to be the first term in a sequence ni{ } .

Proceed inductively to define subsequence sin n0 1{ }  of sin0{ } and n or1 0 1= ,    to be the second term in ni{ } ,

and in turn s sin n n in n np p0 1 0 1 1 ...   ...  { } ⊆ { }−  and the( p+1)-th term in ni{ } .

Now consider the sequence s s s s ii in in n in n n= ={ }0 1 2
0 0 1 0 1 2 0 1 2, , ...,  , ,  ...  . 

This is also clearly a subsequence of si{ } since all its terms occur at successively later stages of si{ } since

the second term of sin n0 1{ }  is later in si{ } than the first term of sin0{ }, since sin n0 1{ }  is itself a subsequence

of sin0{ }.  Also since s s sp
i in n n in n np p= ∈{ }2

0 1 0 1 ...   ...  , s ni
i{ } → { }. [5 marks]


