DEPARTMENT OF MATHEMATICS

MATHS 255FC

Assignment 8 solutions

[4 marks]

1. (a) Show first principles that the sequence $\left\{\frac{4n+1}{n+4}, n=0, 1, 2, \ldots\right\}$ is convergent.

$$\left|\frac{4n+1}{n+4} - 4\right| < \varepsilon \Leftrightarrow \left|\frac{4n+1-4n-16}{n+4}\right| < \varepsilon \Leftrightarrow \left|\frac{-15}{n+4}\right| < \varepsilon \Leftrightarrow 15 < \varepsilon(n+4) \Leftrightarrow 15 < \varepsilon n + 4\varepsilon \Leftrightarrow 15 - 4\varepsilon < \varepsilon n$$
$$\Leftrightarrow \frac{15-4\varepsilon}{\varepsilon} < n \text{ Hence choose } N(\varepsilon) = \frac{15-4\varepsilon}{\varepsilon} \text{ then } \forall \varepsilon > 0, \exists N(\varepsilon) = \frac{15-4\varepsilon}{\varepsilon} > 0 : n > N \Rightarrow \left|\frac{4n+1}{n+4} - 4\right| < \varepsilon$$
$$[4 \text{ marks}]$$

(b) Hence or otherwise show that the sequence $\left\{\sqrt{\frac{4n+1}{n+4}}, n=0, 1, 2,...\right\}$ is convergent. Note that $\frac{4(n+1)+1}{(n+1)+4} - \frac{4n+1}{n+4} = \frac{15}{(n+5)(n+4)} > 0$ so $\frac{4n+1}{n+4}$ is monotone increasing. Also $4 - \frac{4n+1}{n+4} = \frac{3}{n+4} > 0$ so $\frac{4n+1}{n+4}$ is bounded above by 4. Since \sqrt{x} is a monotone increasing function, $x < y \Rightarrow \sqrt{x} < \sqrt{y}$ so $\sqrt{\frac{4n+1}{n+4}}$ is monotone increasing, and

bounded above by $\sqrt{4} = 2$. Hence it is convergent.

- **2.** Consider the set Σ_2 consisting of all sequences on the two elements 0 and 1, with the distance function between any two sequences $s = s_0, s_1, s_2, ...$ and $t = t_0, t_1, t_2, ...$ defined by $d(s,t) = \sum_{i=0}^{\infty} \frac{|s_i t_i|}{2^{i+1}}$.
- (a) Show (Σ_2, d) is a metric space i.e. that *d* is a metric distance function obeying **9.5.9** on p 123 of "Chapter 0".

(i)
$$d(s,t) \ge 0$$
 since $|s_i - t_i| \ge 0$, $d(s,t) = 0 \iff \forall i \ |s_i - t_i| = 0 \iff s = t$
(ii) $d(s,t) = \sum_{i=0}^{\infty} \frac{|s_i - t_i|}{2^{i+1}} = \sum_{i=0}^{\infty} \frac{|t_i - s_i|}{2^{i+1}} = d(t,s)$
(iii) $d(s,t) + d(t,u) = \sum_{i=0}^{\infty} \frac{|s_i - t_i|}{2^{i+1}} + \sum_{i=0}^{\infty} \frac{|t_i - u_i|}{2^{i+1}} = \sum_{i=0}^{\infty} \frac{|s_i - t_i| + |t_i - u_i|}{2^{i+1}} \ge \sum_{i=0}^{\infty} \frac{|s_i - u_i|}{2^{i+1}} = d(s,u)$
Since $\forall i |s_i - t_i| + |t_i - u_i| \ge |s_i - u_i|$. [4 marks]

(b) Show that $d(s,t) < \frac{1}{2^n} \Rightarrow s_i = t_i, i = 0, \dots, n-1,$

$$s_{i} = t_{i}, \ i = 0, \ \dots, n-1 \Rightarrow d(s,t) \le \frac{1}{2^{n}}$$

If $\exists i \le n-1 : s_{i} \ne t_{i}, \ \Rightarrow d(s,t) \ge \frac{1}{2^{i+1}} \ge \frac{1}{2^{n}},$
conversely $\forall i \le n-1 : s_{i} = t_{i}, \ \Rightarrow d(s,t) \le 0 + \ \dots + \sum_{i=n}^{\infty} \frac{|s_{i} - t_{i}|}{2^{i+1}} \le \sum_{i=n}^{\infty} \frac{1}{2^{i+1}} = \frac{1}{2^{n}}$

[3 marks]

(c) Show that (Σ_2, d) is complete i.e. that every Cauchy sequence is convergent. [4 marks]

Let $\{s^i = s_0^i, s_1^i, s_2^i \dots, i = 0, 1, 2 \dots\}$ be a Cauchy sequence of sequences in Σ_2 . then $\forall p > 0$, $\exists N_p: m, n > N$, $d(s^m, s^n) < \frac{1}{2^p} \Rightarrow s_i^m = s_i^n$, $i = 0, \dots, p-1$. Thus for each p we can define a unique $s_{p-1}^L = s_{p-1}^m = s_{p-1}^n$. So define $\{s^L = s_1^L, s_2^L, \dots\}$ inductively for each p. Then $\{s^i \ i = 0, 1, 2 \dots\} \Rightarrow \{s^L\}$ since $\forall \varepsilon > 0, \ \exists p: \frac{1}{2^p} < \varepsilon, \ \exists N_p: n > N, \ s_i^L = s_i^n, \ i = 0, \dots, p-1 \Rightarrow d(s^L, s^n) \le \frac{1}{2^{p+1}} < \frac{1}{2^p} = \varepsilon$

- **3.** A metric space is called compact if every sequence in the space has a convergent subsequence. A subset of **R** is compact if and only if it is closed an bounded.
- (a) Use the fact that every bounded sequence has a convergent subsequence (see sequence notes for a proof of this) to show that [0,1] is compact.

Since [0,1] is bounded, so is any sequence $\{x_i \mid i = 0, 1, 2 \dots\}$ in [0,1]. Since any bounded sequence has a convergent subsequence, so does any sequence in [0,1]. Also since v is closed this sequence must tend to a limit in [0,1]. Otherwise $\{x_i \mid i = 0, 1, 2 \dots\} \rightarrow L \notin [0,1]$. Say L > 1, then L = 1 + d. but $x_i \in [0,1]$, so $|x_i - L| \ge d$ contradicting convergence to L. [4 marks]

(b) Give examples of a sequences in (0,1) and **R** which have no convergent subsequence in their respective sets.

 $\left\{\frac{1}{n}\right\} \to 0 \notin (0,1), \ \{n\} \to \infty \notin \mathbb{R}.$ These are both monotone and thus have every subsequence tending to the same "limit", so neither has a subsequence convergent in their respective set. [2 marks]

(c) Show that (Σ_2, d) is compact.

We show an arbitrary sequence $\{s^i = s_0^i, s_1^i, s_2^i, ..., i = 0, 1, 2, ...\}$ in Σ_2 has a convergent subsequence. Consider the first terms s_0^i in each of the sequence s^i , i = 0, 1, 2, ... in the sequence of sequences $\{s^i\}$. Either there is an infinite number of both 0s and 1s or there is a finite number of one of them. If there are a finite number of 0s pick the subsequence $\{s^{i1}\}$ consisting of all those sequences $s^i : s_0^i = 1$. Otherwise pick the corresponding subsequence $\{s^{i0}\}$, consisting of all those sequences $s^i : s_0^i = 0$. Call this chosen subsequence $\{s^{in_0}\}$ and define $n_0 = 0$, or 1 to be the first term in a sequence $\{n_i\}$.

Proceed inductively to define subsequence $\{s^{in_0n_1}\}$ of $\{s^{in_0}\}$ and $n_1 = 0$, or 1 to be the second term in $\{n_i\}$, and in turn $\{s^{in_0n_1 \dots n_p}\} \subseteq \{s^{in_0n_1 \dots n_{p-1}}\}$ and the (p+1)-th term in $\{n_i\}$. Now consider the sequence $\{\overline{s}^i = s_0^{in_0}, s_1^{in_0n_1}, s_2^{in_0n_1n_2} \dots, i = 0, 1, 2 \dots\}$.

This is also clearly a subsequence of $\{s^i\}$ since all its terms occur at successively later stages of $\{s^i\}$ since the second term of $\{s^{in_0n_1}\}$ is later in $\{s^i\}$ than the first term of $\{s^{in_0}\}$, since $\{s^{in_0n_1}\}$ is itself a subsequence of $\{s^{in_0}\}$. Also since $\bar{s}_p^i = s_2^{in_0n_1 \cdots n_p} \in \{s^{in_0n_1 \cdots n_p}\}, \{\bar{s}^i\} \rightarrow \{n_i\}$. [5 marks]