MATHS 255 FC	Solutions to Assignment 6	Due: 24 April 2001

1. (a) We prove this by induction. Note that, because we want to know that the result holds for all $n \ge 0$, we have n = 0 for the base instead of n = 1.

Base: When n = 0 we have $10^0 = 1 \equiv 1 \pmod{3}$, so the result holds for n = 0.

Inductive step: Suppose $n \ge 0$ and $10^n \equiv 1 \pmod{3}$. Then $3 \mid 10^n - 1$, so there is some $x \in \mathbb{Z}$ with $10^n - 1 = 3x$. But then

$$10^{n+1} - 1 = 10^{n+1} - 10^n + 10^n - 1 = 10^n(10 - 1) + 3x$$

= 3(3 \cdot 10^n + x),

so $3 \mid 10^{n+1} - 1$, so $10^{n+1} \equiv 1 \pmod{3}$, as required.

Hence, by induction, $10^n \equiv 1 \pmod{3}$ for all $n \ge 0$.

(b) We have $n = \sum_{i=0}^{k} a_i 10^i$. So we have $n \equiv \sum_{i=0}^{k} a_i 10^i \pmod{3}$. But we also have $10^i \equiv 1 \pmod{3}$ for each i, so $n \equiv \sum_{i=0}^{k} a_i \cdot 1 \pmod{3}$, i.e.

$$n \equiv \sum_{i=0}^{k} a_i \pmod{3},$$

as required.

(c) Suppose 3 | n. So there is some $x \in \mathbb{Z}$ such that n = 3x. By part (b), we have $n \equiv \sum_{i=0}^{k} a_i \pmod{3}$, so there is some $y \in \mathbb{Z}$ such that $n - \sum_{i=0}^{k} a_i = 3y$. But then $3x - \sum_{i=0}^{k} a_i = 3y$, so $\sum_{i=0}^{k} a_i = 3(x-y)$, so $3 \mid \sum_{i=0}^{k} a_i$.

Conversely, suppose $3 \mid \sum_{i=0}^{k} a_i$. Then $\sum_{i=0}^{k} a_i = 3z$ for some $z \in \mathbb{Z}$. As above, $n - \sum_{i=0}^{k} a_i = 3y$ for some $y \in \mathbb{Z}$, so n = 3y + 3z = 3(y + z), so $3 \mid n$.

2. First we find y so that $15y \equiv 1 \pmod{37}$, by using the Euclidean Algorithm for 37 and 15:

From this we see that $37 \cdot (-2) + 15 \cdot 5 = 1$, so $15 \cdot 5 \equiv 1 \pmod{37}$, in other words $\overline{15} \cdot_{37} \overline{5} = \overline{1}$. Now we multiply both sides of the equation $\overline{16} = \overline{15} \cdot_{37} \overline{x}$ by $\overline{5}$ to get

$$\overline{5} \cdot_{37} \overline{16} = \overline{5} \cdot_{37} \overline{15} \cdot_{37} \overline{x}$$
$$= \overline{1} \cdot_{37} \overline{x},$$

so the solution is $\overline{x} = \overline{5} \cdot_{37} \overline{16} = \overline{5 \cdot 16} = \overline{80} = \overline{6}$.

3. We use Euclid's Algorithm. First we divide $x^3 + x^2 - 4x - 4$ into $x^4 + 3x^3 + 3x^2 + 3x + 2$:

		x	+2			
$x^3 + x^2 - 4x - 4$)	x^4	$+3x^{3}$	$+3x^{2}$	+3x	+2
		x^4	$+ x^{3}$	$-4x^{2}$	-4x	
			$2x^3$	$+7x^{2}$	+7x	+2
			$2x^3$	$+ 2x^{2}$	-8x	-8
				$5x^2$	+15x	+10

So $x^4 + 3x^3 + 3x^2 + 3x + 2 = (x+2)(x^3 + x^2 - 4x - 4) + (5x^2 + 15x + 10)$. Next we divide $5x^2 + 15x + 10$ into $x^3 + x^2 - 4x - 4$:

$$5x^{2} + 15x + 10 \xrightarrow{\frac{1}{5}x} - \frac{2}{5}$$

$$5x^{2} + 15x + 10 \xrightarrow{\frac{1}{5}x} + x^{2} - 4x - 4$$

$$x^{3} + 3x^{2} + 2x$$

$$-2x^{2} - 6x - 4$$

$$-2x^{2} - 6x - 4$$

$$0$$

So we have $x^3 + x^2 - 4x - 4 = (\frac{1}{5}x - \frac{2}{5})(5x^2 + 15x + 10)$. The last non-zero remainder is $5x^2 + 15x + 10$, so this is a greatest common divisor.

[Note that any non-zero constant multiple of this is also a greatest common divisor. One convention we use is to choose the *monic* polynomial, in other words the polynomial which has 1 as the coefficient for the term of highest degree. So we would say that *the* greatest common divisor of $x^4 + 3x^3 + 3x^2 + 3x + 2$ and $x^3 + x^2 - 4x - 4$ is $x^2 + 3x + 2$.]

- 4. (a) Since the degree of ax + b is 1, if it is reducible then we can write it as ax + b = p(x)q(x), where p(x) and q(x) both have degree less than 1. But then both p(x) and q(x) are constant, so p(x)q(x) is constant, so it cannot equal ax + b.
 - (b) Since the degree of $x^2 + 1$ is 2, if it is reducible then we can write it as $x^2 + 1 = p(x)q(x)$, where p(x) and q(x) both have degree less than 2. Since deg p(x) + deg q(x) = 2, p(x) and q(x) must both have degree 1. So p(x) = ax + b for some $a, b \in \mathbb{R}$ with $a \neq 0$. Then

$$x^{2} + 1 = a \left(x - \frac{-b}{a} \right) q(x),$$

so $\left(x - \frac{-b}{a}\right) \mid x^2 + 1$. By the Factor Theorem, this implies that $\left(\frac{-b}{a}\right)^2 + 1 = 0$, which is impossible as $\left(\frac{-b}{a}\right)^2 \ge 0$.